On the Goldbach Conjecture

Habibur Rahaman

Department of Mathematics and Statistics
Indian Institute of Science Education and Research Kolkata
September 19, 2022

Chen's Theorem

Goldbach Conjecture(1742).

Chen's Theorem

Goldbach Conjecture(1742).

Every even positive integer greater then 2 can be written as sum of two primes.

Chen's Theorem

Goldbach Conjecture(1742).

Every even positive integer greater then 2 can be written as sum of two primes.

Chen's Theorem(1973).

Chen's Theorem

Goldbach Conjecture(1742).

Every even positive integer greater then 2 can be written as sum of two primes.

Chen's Theorem(1973).

Every sufficiently large even integer can be written as sum of a prime and a number which is product of at most two primes.

The Twin Prime Counting Function

$$
\pi_{2}(x): \text { The number of twin primes } \leq x .
$$

The Twin Prime Counting Function

$\pi_{2}(x)$: The number of twin primes $\leq x$.

$$
\begin{gathered}
\pi_{2}(x) \sim \frac{c x}{(\log x)^{2}}=: \Pi(x) \\
c:=2 \prod_{p>2} \frac{(1-2 / p)}{(1-1 / p)^{2}} .
\end{gathered}
$$

The Twin Prime Counting Function

Year	Author(s)	$\pi_{2}(x) / \Pi(x) \lesssim$
1947	Selberg	8
1964	Pan	6
1966	Bombieri-Davenport	4
1978	Chen	3.9171
1983	Fouvry-Iwaniec	3.7777
1984	Fouvry	3.7647
1986	Bombieri-Friedander-Iwaniec	3.5
1986	Fouvry-Grupp	3.454
1990	Wu	3.418
2003	Cai-Lu	3.406
2004	Wu	3.399951
2021	Lichtman	3.29956

Chen's Theorem

Chen's Theorem

Theorem.

Let $R(N)$ denote the number of representations of N as $N=p+n$, where p is a prime and n is product of at most two primes. Then for sufficiently large even N,

$$
R(N) \gg \mathfrak{S}(N) \frac{2 N}{(\log N)^{2}},
$$

where $\mathfrak{S}(N)=\prod_{p>2}\left(1-\frac{1}{(p-1)^{2}}\right) \prod_{\substack{p \mid N \\ p>2}} \frac{p-1}{p-2}$.

Sieving Function

- Let $A=\{a(n)\}_{n \geq 1}$ be an arithmetic function, where $a(n) \geq 0$ and $|A|=\sum_{n} a(n)<\infty$.
- Let \mathcal{P} be a set of primes and $z \geq 2$ be a real number.
- $P(z):=\prod_{\substack{p \in \mathcal{P} \\ p<z}} p$.

Sieving Function

- Let $A=\{a(n)\}_{n \geq 1}$ be an arithmetic function, where $a(n) \geq 0$ and $|A|=\sum_{n} a(n)<\infty$.
- Let \mathcal{P} be a set of primes and $z \geq 2$ be a real number.
- $P(z):=\prod_{\substack{p \in \mathcal{P} \\ p<z}} p$.
- $S(A, \mathcal{P}, z):=\sum_{(n, P(z))=1} a(n)$.

Sieving Function

- Mobius function $\mu(n)=(-1)^{k}$, for square free n with k prime divisors and $\mu(n)=0$, otherwise.

Sieving Function

- Mobius function $\mu(n)=(-1)^{k}$, for square free n with k prime divisors and $\mu(n)=0$, otherwise.
-

$$
(1 * \mu)(n)=\sum_{d \mid n} \mu(d)= \begin{cases}1 & \text { if } \mathrm{n}=1 \\ 0 & \text { if } \mathrm{n}>1\end{cases}
$$

Sieving Function

- Mobius function $\mu(n)=(-1)^{k}$, for square free n with k prime divisors and $\mu(n)=0$, otherwise.
-

$$
(1 * \mu)(n)=\sum_{d \mid n} \mu(d)= \begin{cases}1 & \text { if } \mathrm{n}=1 \\ 0 & \text { if } \mathrm{n}>1\end{cases}
$$

- Using above, $S(A, \mathcal{P}, z)=\sum_{d \mid P(z)} \mu(d)\left|A_{d}\right|$, where $\left|A_{d}\right|=\sum_{d \mid n} a(n)$.
- Let $g_{n}(d)$ multiplicative function with $0 \leq g_{n}(p)<1$ for $p \in \mathcal{P}$.
- Remainder $r(d):=\left|A_{d}\right|-\sum_{n} a(n) g_{n}(d)$.

Sieving Function

- Mobius function $\mu(n)=(-1)^{k}$, for square free n with k prime divisors and $\mu(n)=0$, otherwise.
-

$$
(1 * \mu)(n)=\sum_{d \mid n} \mu(d)= \begin{cases}1 & \text { if } \mathrm{n}=1 \\ 0 & \text { if } \mathrm{n}>1\end{cases}
$$

- Using above, $S(A, \mathcal{P}, z)=\sum_{d \mid P(z)} \mu(d)\left|A_{d}\right|$, where $\left|A_{d}\right|=\sum_{d \mid n} a(n)$.
- Let $g_{n}(d)$ multiplicative function with $0 \leq g_{n}(p)<1$ for $p \in \mathcal{P}$.
- Remainder $r(d):=\left|A_{d}\right|-\sum_{n} a(n) g_{n}(d)$.
- Using $r(d)$, we have $S(A, \mathcal{P}, z)=\sum_{n} a(n) V_{n}(z)+R(z)$, where $V_{n}(z)=\prod_{p \mid P(z)}\left(1-g_{n}(p)\right)$ and $R(z)=\sum_{d \mid P(z)} \mu(d) r(d)$

Sieve weights

- Let $D>0$. Let $\lambda^{+}(d), \lambda^{-}(d)$ be arithmetic functions with

$$
\begin{aligned}
& \lambda^{+}(1)=1, \lambda^{+}(d)=0 \text { for } d \geq D, \sum_{d \mid n} \lambda^{+}(d) \geq 0 \text { for } n \geq 2 \\
& \lambda^{-}(1)=1, \lambda^{-}(d)=0 \text { for } d \geq D, \sum_{d \mid n} \lambda^{-}(d) \leq 0 \text { for } n \geq 2 .
\end{aligned}
$$

Sieve weights

- Let $D>0$. Let $\lambda^{+}(d), \lambda^{-}(d)$ be arithmetic functions with

$$
\begin{aligned}
& \lambda^{+}(1)=1, \lambda^{+}(d)=0 \text { for } d \geq D, \sum_{d \mid n} \lambda^{+}(d) \geq 0 \text { for } n \geq 2 \\
& \lambda^{-}(1)=1, \lambda^{-}(d)=0 \text { for } d \geq D, \sum_{d \mid n} \lambda^{-}(d) \leq 0 \text { for } n \geq 2 .
\end{aligned}
$$

- Let $F(s), f(s)$ are some functions satisfying

$$
\begin{aligned}
& s F(s)=2 e^{\gamma}, \quad[1 \leq s \leq 3], \quad(s F(s))^{\prime}=f(s-1), \quad[s>3], \\
& s f(s)=2 e^{\gamma} \log (s-1), \quad[2 \leq s \leq 4], \quad(s f(s))^{\prime}=F(s-1), \quad[s>2] .
\end{aligned}
$$

Jurkat-Richert Theorem

Let \mathcal{Q} be a finite subset of \mathcal{P} and for all $n, \prod_{\substack{p \in \mathcal{P} \backslash \mathcal{Q} \\ u \leq p<z}}\left(1-g_{n}(p)\right)^{-1}<(1+\epsilon) \frac{\log z}{\log u}$,
for some $\epsilon \in(0,1 / 200)$ and for any $1<u<z$.

Jurkat-Richert Theorem

Let \mathcal{Q} be a finite subset of \mathcal{P} and for all $n, \prod_{\substack{p \in \mathcal{P} \backslash \mathcal{Q} \\ u \leq p<z}}\left(1-g_{n}(p)\right)^{-1}<(1+\epsilon) \frac{\log z}{\log u}$, for some $\epsilon \in(0,1 / 200)$ and for any $1<u<z$.

Jurkat-Richert Theorem.

For any $D \geq z$, there is upper bound as

$$
S(A, \mathcal{P}, z)<\left(F(s)+\epsilon e^{14-s}\right) X+R
$$

and for any $D \geq z^{2}$, there is a lower bound as

$$
S(A, \mathcal{P}, z)>\left(f(s)-\epsilon e^{14-s}\right) X-R
$$

where $s=\frac{\log D}{\log z}, X=\sum_{n} a(n) V_{n}(z)$ and the remainder term $R=\sum_{\substack{d \mid P(z) \\ d<D Q}}|r(d)|$.

Outline of the proof of Chen's Theorem

- Let $N \geq 4^{8}$ even integer, $z=N^{1 / 8}, y=N^{1 / 3}$.
- Let $\mathcal{P}=\{p<N: p \nmid N\}$.

Outline of the proof of Chen's Theorem

- Let $N \geq 4^{8}$ even integer, $z=N^{1 / 8}, y=N^{1 / 3}$.
- Let $\mathcal{P}=\{p<N: p \nmid N\}$.
- $w(n)=1-\frac{1}{2} \sum_{\substack{z \leq q<y \\ q^{k} \| n}} k-\frac{1}{2} \sum_{\substack{p_{1} p_{2} p_{3}=n \\ z \leq p_{1}<y \leq p_{2} \leq p_{3}}} 1$.

Outline of the proof of Chen's Theorem

- Let $N \geq 4^{8}$ even integer, $z=N^{1 / 8}, y=N^{1 / 3}$.
- Let $\mathcal{P}=\{p<N: p \nmid N\}$.
- $w(n)=1-\frac{1}{2} \sum_{\substack{z \leq q<y \\ q^{k} \| n}} k-\frac{1}{2} \sum_{\substack{p_{1} p_{2} p_{3}=n \\ z \leq p_{1}<y \leq p_{2} \leq p_{3}}} 1$.
- For $n<N$ and $(n, N)=(n, P(z))=1$, $w(n)>0 \Rightarrow n \in\left\{1, p_{1}, p_{1} p_{2}: p_{1}, p_{2} \geq z\right\}$.
- Let $\mathcal{A}=\{N-p: p \leq N, p \in \mathcal{P}\}$.

Proof (continued.)

$$
\begin{align*}
R(N) & \geq \sum_{\substack{n=N-p \\
n \in\left\{1, p_{1}, p_{1} p_{2}: p_{1}, p_{2} \geq z\right\}}} 1 \\
& \geq \sum_{\substack{n \in \mathcal{A} \\
(n, P(z))=1 \\
n \in\left\{1, p_{1}, p_{1} p_{2}: p_{1}, p_{2} \geq z\right\}}} w(n) \\
& \geq \sum_{\substack{n \in \mathcal{A} \\
(n, P(z))=1}} w(n) \\
& =\sum_{\substack{n \in \mathcal{A} \\
(n, P(z))=1}} 1-\frac{1}{2} \sum_{\substack{n \in \mathcal{A} \\
(n, P(z))=1}} \sum_{\substack{z \leq q<y \\
q^{k} \| n}} k-\frac{1}{2} \sum_{\substack{n \in \mathcal{A} \\
(n, P(z))=1}} \sum_{\substack{p_{1} p_{2} p_{3}=n \\
z \leq p_{1}<y \leq p_{2} \leq p_{3}}} 1 .
\end{align*}
$$

Proof (continued.)

- Let $A=\{a(n)\}_{n=1}^{\infty}$ be characteristic function on \mathcal{A}.
- $A_{q}=\left\{a_{q}(n)\right\}_{n=1}^{\infty}$ be arithmetic function defined as

$$
a_{q}(n)= \begin{cases}1 & \text { if } n \in \mathcal{A} \text { and } q \mid n \\ 0 & \text { otherwise }\end{cases}
$$

Using above, first term of (1) reduces to $S(A, \mathcal{P}, z)$ and second term reduces to $\frac{1}{2} \sum_{z \leq q<y} S\left(A_{q}, \mathcal{P}, z\right)+O\left(N^{7 / 8}\right)$.

Proof (continued.)

Switching Principle

To compute the third term of (1), let us define the switched set

$$
\mathcal{B}:=\left\{N-p_{1} p_{2} p_{3}: z \leq p_{1}<y \leq p_{2} \leq p_{3}, p_{1} p_{2} p_{3}<N,\left(p_{1} p_{2} p_{3}, N\right)=1\right\} .
$$

Studying the third term of (1) is equivalent to bounding number of primes in \mathcal{B}.

Proof (continued.)

Switching Principle

To compute the third term of (1), let us define the switched set

$$
\mathcal{B}:=\left\{N-p_{1} p_{2} p_{3}: z \leq p_{1}<y \leq p_{2} \leq p_{3}, p_{1} p_{2} p_{3}<N,\left(p_{1} p_{2} p_{3}, N\right)=1\right\} .
$$

Studying the third term of (1) is equivalent to bounding number of primes in \mathcal{B}.

- Let $B=\{b(n)\}_{n=1}^{\infty}$ be characteristic function on \mathcal{B}.
- Then

$$
\frac{1}{2} \sum_{\substack{n \in \mathcal{A} \\(n, P(z))=1}} \sum_{\substack{p_{1} p_{2} p_{3}=n \\ z \leq p_{1}<y \leq p_{2} \leq p_{3}}} 1=\frac{1}{2} S(B, \mathcal{P}, y)+O\left(N^{1 / 3}\right)
$$

Proof (continued.)

Switching Principle

To compute the third term of (1), let us define the switched set

$$
\mathcal{B}:=\left\{N-p_{1} p_{2} p_{3}: z \leq p_{1}<y \leq p_{2} \leq p_{3}, p_{1} p_{2} p_{3}<N,\left(p_{1} p_{2} p_{3}, N\right)=1\right\} .
$$

Studying the third term of (1) is equivalent to bounding number of primes in \mathcal{B}.

- Let $B=\{b(n)\}_{n=1}^{\infty}$ be characteristic function on \mathcal{B}.
- Then

$$
\begin{gathered}
\frac{1}{2} \sum_{\substack{n \in \mathcal{A} \\
(n, P(z))=1}} \sum_{\substack{p_{1} p_{2} p_{3}=n \\
z \leq p_{1}<y \leq p_{2} \leq p_{3}}} 1=\frac{1}{2} S(B, \mathcal{P}, y)+O\left(N^{1 / 3}\right) . \\
R(N)>S(A, \mathcal{P}, z)-\frac{1}{2} \sum_{z \leq q<y} S\left(A_{q}, \mathcal{P}, z\right)-\frac{1}{2} S(B, \mathcal{P}, y)-2 N^{7 / 8}-N^{1 / 3} .
\end{gathered}
$$

End of the Proof

Using Jurkat-Richert Theorem and Bombieri-Vinogradov Theorem, we have the following bounds.

- $S(A, \mathcal{P}, z)>\left(\frac{e^{\gamma} \log 3}{2}+O(\epsilon)\right) \frac{N V(z)}{\log N}$.
- $\sum_{z \leq q<y} S\left(A_{q}, \mathcal{P}, z\right)<\left(\frac{e^{\gamma} \log 6}{2}+O(\epsilon)\right) \frac{N V(z)}{\log N}$.
- $S(B, \mathcal{P}, y)<\left(\frac{c e^{\gamma}}{2}+O(\epsilon)\right) \frac{N V(z)}{\log N}+O\left(\frac{N}{\epsilon(\log N)^{3}}\right)$.

Using Mertens's formula, we have,

- $V(z)=\mathfrak{S}(N) \frac{e^{-\gamma}}{\log z}\left(1+O\left(\frac{1}{\log N}\right)\right.$.

End of the Proof

Using Jurkat-Richert Theorem and Bombieri-Vinogradov Theorem, we have the following bounds.

- $S(A, \mathcal{P}, z)>\left(\frac{e^{\gamma} \log 3}{2}+O(\epsilon)\right) \frac{N V(z)}{\log N}$.
- $\sum_{z \leq q<y} S\left(A_{q}, \mathcal{P}, z\right)<\left(\frac{e^{\gamma} \log 6}{2}+O(\epsilon)\right) \frac{N V(z)}{\log N}$.
- $S(B, \mathcal{P}, y)<\left(\frac{c e^{\gamma}}{2}+O(\epsilon)\right) \frac{N V(z)}{\log N}+O\left(\frac{N}{\epsilon(\log N)^{3}}\right)$.

Using Mertens's formula, we have,

- $V(z)=\mathfrak{S}(N) \frac{e^{-\gamma}}{\log z}\left(1+O\left(\frac{1}{\log N}\right)\right.$.

Putting all these bounds in the expression of $R(N)$, we have,

$$
R(N) \gg \mathfrak{S}(N) \frac{2 N}{(\log N)^{2}}
$$

References

嗇 Melvyn B. Nathanson. Additive Number Theory. Springer-Verlag, New York, 1996. Graduate Texts in Mathematics. 164.
E. Fouvry and F. Grupp. On the switching principle in sieve theory. J. Reine Angew. Math.,370:101-126, 1986.
國 J. R. Chen, On the representation of a large even integer s the sum of a prime and the product of at most two primes, Sci. Sinica 16 (1973), 157-176.

Thank you!

