Representation of sl($2, \mathbb{C})$

Jitender Sharma

Graduate Student Seminar

Department of Mathematics and Statistics
Indian Institute of Science Education and Research, Kolkata

September 12, 2022

Definition of Lie algebra

Lie Algebra:- A finite dimensional real or complex lie algebra is a finite dimensional complex or real vector space \mathfrak{g}, together with a map $[\cdot, \cdot]: \mathfrak{g} \times \mathfrak{g} \rightarrow \mathfrak{g}$ such that the following properties holds ;
(1) $[\cdot, \cdot]$ is bilinear.
(2) $[\cdot, \cdot]$ is skew symmetric: $[X, Y]=-[Y, X]$ for all $X, Y \in \mathfrak{g}$
(3) The Jacobi identity holds;

$$
[X,[Y, Z]]+[Y,[Z, X]]+[Z,[X, Y]]=0
$$

for all $X, Y, Z \in \mathfrak{g}$.
Lie Subalgebra:- A subalgebra of a real or complex lie algebra \mathfrak{g} is a subspace \mathfrak{h} of \mathfrak{g} such that $\left[H_{1}, H_{2}\right] \in \mathfrak{h}$ for all $H_{1}, H_{2} \in \mathfrak{h}$.
Ideal:- A subalgebra \mathfrak{h} of a lie algebra \mathfrak{g} is said to be Ideal in \mathfrak{g} if $[X, H] \in \mathfrak{h}$ for all $X \in \mathfrak{g}$ and $H \in \mathfrak{h}$.
A Lie algebra \mathfrak{g} is called irreducible if the only ideals in \mathfrak{g} are \mathfrak{g} and $\{0\}$.A Lie algebra \mathfrak{g} is called Simple if it is irreducible and $\operatorname{dimg} \geq 2$.

$\mathfrak{s l}(2, \mathbb{C})$ and its properties

$\mathfrak{s l}(2, \mathbb{C})=\left\{X \in M_{2}(\mathbb{C}) \mid \operatorname{trace}(X)=0\right\}$, the bracket operation is given by

$$
[X, Y]=X Y-Y X
$$

Then $\mathfrak{s l}(2, \mathbb{C})$ is a lie complex lie algebra with respect to this bracket operation.
Some basic properties of $\mathfrak{s l}(2, \mathbb{C})$:-
(1) $\operatorname{dim}(\mathfrak{s l}(2, \mathbb{C}))=3$.
(2) $\mathfrak{s l}(2, \mathbb{C})$ is simple.
(3) $\mathfrak{s l}(2, \mathbb{C})$ is the isomorphic to the complexification of real lie algebra $\mathfrak{s u}(2)$ which comes from the lie group $S U(2)$.
(4) $X=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right), Y=\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right)$ and $H=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$ is a basis of $\mathfrak{s l}(2, \mathbb{C})$.
(5) $[H, X]=2 X,[H, Y]=-2 Y,[X, Y]=H$.

Representation of Lie algebra

Definition:- If \mathfrak{g} is a real or complex lie algebra, then a finite dimensional complex representation of \mathfrak{g} is a lie algebra homomorphism π of \mathfrak{g} into $\mathfrak{g l}(V)$, where V is a finite dimensional complex vector space.

The notion of invariant subspace, irreducible representation, intertwining map is same as of group representations.

Important results

Proposition

Let G be a matrix lie group with lie algebra \mathfrak{g} and let \prod be a(finite dimensional real or complex) representation of G,acting on space V.Then there is a unique representation π of \mathfrak{g} acting on the same space V such that for all $X \in \mathfrak{g}$

$$
\Pi\left(e^{X}\right)=e^{\pi(X)} \text { and } \pi(X)=\left.\frac{d}{d t}\left(\prod\left(e^{t X}\right)\right)\right|_{t=0}
$$

Two important results

Proposition

Let G be a connected matrix Lie group with lie algebra \mathfrak{g}. Let Π be a representation of G and π be the associated representation of \mathfrak{g}. Then Π is irreducible if and only if π is irreducible.

Proposition

Let \mathfrak{g} be real lie algebra and $\mathfrak{g}_{\mathbb{C}}$ be its complexification. Then every finite dimensional complex representation π of \mathfrak{g} has a unique extension to complex linear representation of \mathfrak{g},also denoted π.Furthermore, π is irreducible as a representation of $\mathfrak{g}_{\mathbb{C}}$ if and only if it is irreducible as a representation of \mathfrak{g}.

Representation of SU(2)

Let V_{m} be space of homogenous polynomial of degree m in two complex variable,that means elements of V_{m} look like,

$$
f\left(z_{1}, z_{2}\right)=a_{0} z_{1}^{m}+a_{1} z_{1}^{m-1} z_{2}+a_{2} z_{1}^{m-2} z_{2}^{2}+\ldots+a_{m} z_{2}^{m}
$$

Where a_{i} are complex numbers. Clearly $\operatorname{dim}\left(V_{m}\right)=m+1$.
Now let us define the action of $S U(2)$ on V_{m}. For each $U \in S U(2)$ define a linear transformation $\Pi_{m}(U)$ on the space V_{m} by the formula,

$$
\left[\Pi_{m}(U) f\right] z=f\left(U^{-1} z\right) \text { for } z \in \mathbb{C}^{2}
$$

This is indeed a representation of $\mathbf{S U (2)}$ that is we need to show $\Pi_{m}\left(U_{1}\right)\left(\Pi_{m}\left(U_{2}\right)\right)=\Pi_{m}\left(U_{1} U_{2}\right)$ now let $f \in V_{m}$ and $z \in \mathbb{C}^{2}$, then

$$
\begin{aligned}
\Pi_{m}\left(U_{1}\right)\left(\Pi_{m}\left(U_{2}\right) f\right) z & =\left[\Pi_{m}\left(U_{2}\right) f\right]\left(U_{1}^{-1} z\right) \\
& =f\left(U_{2}^{-1} U_{1}^{-1} z\right) \\
& =\left[\Pi_{m}\left(U_{1} U_{2}\right) f\right] z
\end{aligned}
$$

Hence Π_{m} is indeed a $m+1$ dimensional representation of $S U(2)$

Induced representation π_{m} of $\mathfrak{s u}(2)$ through $\operatorname{SU}(2)$

Now the associated representation π_{m} of $\mathfrak{s u}(2)$ is given by

$$
\pi_{m}(X)=\left.\frac{d}{d t} \Pi_{m}\left(e^{t X}\right)\right|_{t=0}
$$

Now $\pi_{m}(X)$ is a map from V_{m} to V_{m}, thus

$$
\left(\pi_{m}(X) f\right) z=\left.\frac{d}{d t}\left(\Pi_{m}\left(e^{t X}\right) f\right) z\right|_{t=0}=\left.\frac{d}{d t} f\left(e^{-t X} z\right)\right|_{t=0}
$$

Here calculation is bit long so i will skip this calculation and state the important results,

Proposition

For each $m \geq 0$, the representation π_{m} is irreducible.

Representation of $\mathfrak{s l}(2, \mathbb{C})$

Now first let fix the basis of $\mathfrak{s l}(2, \mathbb{C}), X=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right), Y=\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right)$ and $H=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$ which have commutation relations, $[H, X]=2 X,[H, Y]=-2 Y,[X, Y]=H$. Basic idea:- Now previously while dealing with representation $S U(2)$ and its lie algebra $\mathfrak{s u}(2)$ for each $m \geq 0$ there is a irreducible representation π_{m} of $\mathfrak{s l}(2, C)$ having dimension $m+1$.Now what we will show now that this are the only irreducible representation of $\mathfrak{s l}(2, \mathbb{C})$, here is the main result

Theorem

For each $m \geq 0$, there is an irreducible complex representation of $\mathfrak{s l}(2, \mathbb{C})$ with dimension $m+1$. Any two irreducible complex representations of $\mathfrak{s l}(2, \mathbb{C})$ with same dimension are isomorphic.If π is an irreducible complex representtion of $\mathfrak{s l}(2, \mathbb{C})$ with dimension $m+1$, then π is isomorphic to representation π_{m}.

Some baby steps to representation of $\mathfrak{s l}(2, \mathbb{C})$

Lemma

Let u be an eigenvector of $\pi(H)$ with an eigenvalue $\alpha \in \mathbb{C}$. Then we have

$$
\pi(H) \pi(X) u=(\alpha+2) \pi(X) u
$$

Thus either $\pi(X) u=0$ or $\pi(X) u$ is an eigenvector for $\pi(H)$ with eigenvalue $\alpha+2$.Similarly,

$$
\pi(H) \pi(Y) u=(\alpha-2) \pi(Y) u
$$

Thus either $\pi(Y) u=0$ or $\pi(Y) u$ is an eigenvector for $\pi(H)$ with eigenvalue $\alpha-2$

Proof of previous lemma

Proof.

Now π is a Lie algebra homomorphism then, $\pi([H, X])=[\pi(H), \pi(X)]$ and hence

$$
\begin{aligned}
\pi(2 X) & =\pi(H) \pi(X)-\pi(X) \pi(H) \\
2 \pi(X)(u) & =\pi(H)(\pi(X) u)-\pi(X)(\pi(H) u) \\
& =\pi(H)(\pi(X) u)-\alpha \pi(X) u
\end{aligned}
$$

And thus we get the desired result.Similar calculation we can do on $[H, Y]$ to get second result.

Classifying the irrep representation of $\mathfrak{s l}(2, \mathbb{C})$

Now the basic strategy is to diagonalize $\pi(H)$ in some nice way. Since we are working over finite dimensional complex vector space there must be an eigenvector of $\pi(H)$ say u corresponding to eigenvalue $\alpha \in \mathbb{C}$. Now if we apply repeatedly the previous lemma, we get

$$
\pi(H)\left(\pi(X)^{k} u\right)=(\alpha+2 k)\left(\pi(X)^{k} u\right), k \geq 0
$$

Since α is fixed and so for two different k_{1} and $k_{2}, \alpha+2 k_{1} \neq \alpha+2 k_{2}$. Now if all of $\pi(X)^{k} u \neq 0$ then we will get infinitely many linearly independent vectors which is not possible in finite dimensional vector space. Thus there is some $N \geq 0$ such that

$$
\pi(X)^{N} u \neq 0
$$

But,

$$
\pi(X)^{N+1} u=0
$$

Now let's say, $u_{0}=\pi(X)^{N} u$ and $\lambda=\alpha+2 N$,then,

$$
\begin{align*}
& \pi(H) u_{0}=\lambda u_{0} \\
& \pi(X) u_{0}=0 \tag{1}
\end{align*}
$$

Continue the proof

Now let us define

$$
u_{k}=\pi(Y)^{k} u_{0}
$$

for $k \geq 0$. Now u_{0} is an eigenvector for $\pi(H)$ corresponding to eigenvalue λ.Similarly if we apply lemma repeatedly for this eigenvector we get,

$$
\pi(H) u_{k}=(\lambda-2 k) u_{k}
$$

Now we will see the action of u_{k} on $\pi(X)$, for $k=1$ by using the fact that $\pi(X) u_{0}=0$ and commutator relation,

$$
\begin{aligned}
\pi(X) u_{1} & =\pi(X)\left(\pi(Y) u_{0}\right) \\
& =\pi(H) u_{0}+\pi(Y)\left(\pi(X) u_{0}\right) \\
& =\lambda u_{0}
\end{aligned}
$$

In genral,

$$
\begin{equation*}
\pi(X) u_{k}=k(\lambda-(k-1)) u_{k-1}, k \geq 1 \tag{2}
\end{equation*}
$$

Let's do some more calculation

Now let us prove the equation 2 by induction,first observe that $u_{k+1}=\pi(Y)^{k+1} u_{0}=\pi(Y)\left(\pi(Y)^{k} u_{0}\right)=\pi(Y) u_{k}$
Now, by using the induction hypothesis and commutator relation we get

$$
\begin{aligned}
\pi(X)\left(\pi(Y) u_{k}\right) & =\pi(H) u_{k}+\pi(Y)\left(\pi(X) u_{k}\right) \\
& =(\lambda-2 k) u_{k}+\pi(Y)\left([k(\lambda-(k-1))] u_{k-1}\right) \\
& =(\lambda-2 k) u_{k}+[k(\lambda-(k-1))] \pi(Y)\left(u_{k-1}\right) \\
& =(\lambda-2 k) u_{k}+[k(\lambda-(k-1))]\left(u_{k}\right) \\
& =(k+1)(\lambda-k) u_{k} \\
& =(k+1)\left(\lambda-((k+1)-1) u_{k}\right. \\
\pi(X) u_{k+1} & =(k+1)\left(\lambda-((k+1)-1) u_{k}\right.
\end{aligned}
$$

Hence we get,

$$
\pi(X) u_{k}=k(\lambda-(k-1)) u_{k-1}
$$

Calculations, Calculations, Calculation.....!!!

Since, $\pi(H) u_{k}=(\lambda-2 k) u_{k}$ and $\pi(H)$ has only finitely many eigenvalues, all $u_{k}^{\prime} s$ cannot be non zero. So there must be a non-negative integer m such that

$$
u_{k}=\pi(Y)^{k} u_{0} \neq 0
$$

for all $k \leq m$, but

$$
u_{m+1}=\pi(Y)^{m+1} u_{0}=0
$$

Now $u_{m+1}=0$, then $\pi(X) u_{m+1}=0$ which in turn means that $(m+1)(\lambda-m) u_{m}=0$, since $u_{m} \neq 0$ and $m+1$ is non zero imply that $\lambda=m$.

All things in one box

Finally for every representation (π, V), there exists an integer $\mathbf{m} \geq \mathbf{0}$ and non-zero vectors $u_{0}, u_{1}, \ldots, u_{m}$ such that

$$
\begin{align*}
& \pi(H) u_{k}=(m-2 k) u_{k} \\
& \pi(Y) u_{k}= \begin{cases}u_{k+1}, & \mathrm{k}<\mathrm{m} \\
0, & \mathrm{k}=\mathrm{m}\end{cases} \tag{3}\\
& \pi(X) u_{k}= \begin{cases}k(m-(k-1)) u_{k-1}, & \mathrm{k}>0 \\
0, & \mathrm{k}=0\end{cases}
\end{align*}
$$

Remark

Note that till now we have not used irreducibility of π.

Almost near the shore, Really !!

Now we know that eigenvectors corresponding to distinct eigenvalues are linearly independent,thus $u_{0}, u_{1} \ldots u_{m}$ forms a linearly independent set in V.Let $W=\operatorname{Span}\left\{u_{0}, u_{1} \ldots u_{m}\right\}$,then $\operatorname{dim}(\mathrm{W})=\mathrm{m}+1$ also each basis element of W under $\pi(H), \pi(X), \pi(Y)$ maps to some scalar multiple of basis hence can we conclude that $\pi(A) W \subset W$ for all $A \in \mathfrak{s l}(2, \mathbb{C})$. Now π is irreducible imply that $\mathrm{W}=\mathrm{V}$.
Finally if we take any irreducible representation we know how it will look like by equation 3. Conversely we can ask whether there exists such a irreducible representation. Not let us define the representation ρ on a $\mathrm{m}+1$ dimensional complex vector space V^{\prime} having basis $u_{0}, u_{1}, \ldots, u_{m}$

$$
\begin{align*}
\rho(H) u_{k} & =(m-2 k) u_{k} \\
\rho(Y) u_{k} & = \begin{cases}u_{k+1}, & \mathrm{k}<\mathrm{m} \\
0, & \mathrm{k}=\mathrm{m}\end{cases} \tag{4}\\
\rho(X) u_{k} & = \begin{cases}k(m-(k-1)) u_{k-1}, & \mathrm{k}>0 \\
0, & \mathrm{k}=0\end{cases}
\end{align*}
$$

ρ is an irreducible representation of V^{\prime}

Now we will show ρ is a lie algebra homomorphism for that first we will show bracket operation will preserved by $[\mathrm{X}, \mathrm{Y}],[\mathrm{H}, \mathrm{X}]$ and $[\mathrm{H} . \mathrm{Y}]$ under ρ ,Since H, X, Y be basis so we are done.Now, $\rho([X, Y])=[\rho(X), \rho(Y)]$ which in turn imply $\rho(H)=\rho(X) \rho(Y)-\rho(Y) \rho(X)$.Now consider three different cases;
Case 1 Acting on $\mathbf{u}_{\mathbf{0}}$:-Then $\rho(H) u_{0}=m u_{0}$ and $(\rho(X) \rho(Y)-\rho(Y) \rho(X)) u_{0}=\rho(X)\left(u_{1}\right)=m u_{0}$ and hence LHS $=$ RHS.

Case 2 Acting on $\mathbf{u}_{\mathbf{m}}$:-Then $\rho(H) u_{m}=-m u_{m}$ and $(\rho(X) \rho(Y)-\rho(Y) \rho(X)) u_{m}=-\rho(Y)\left(m u_{m-1}\right)=-m \rho(Y)\left(u_{m}\right)=$ $-m u_{m}$.Again LHS $=$ RHS.

Case 3 Acting on $\mathbf{u}_{\mathbf{k}}, \mathbf{0}<\mathbf{k}<\mathbf{m}$:- Now $\rho(H) u_{k}=(m-2 k) u_{k}$ and $(\rho(X) \rho(Y)-\rho(Y) \rho(X)) u_{k}=\rho(X)\left(u_{k+1}\right)-\rho(Y)\left(k(m-(k-1)) u_{k-1}\right)=$ $(k+1)(m-k) u_{k}-\left(k(m-(k-1)) \rho(Y)\left(u_{k}\right)=\left(m k-k^{2}+m-k-\right.\right.$ $k(m-k+1)) u_{k}=\left(m k-k^{2}+m-k-m k+k^{2}-k\right) u_{k}=(m-2 k) u_{k}$ Again LHS $=$ RHS .

Final discussion

Hence $\rho([X, Y])=[\rho(X), \rho(Y)]$ for X, Y in V^{\prime} since both of them are linear transformation and agree on the basis elements.Similarly we can verify for $[\mathrm{H}, \mathrm{X}]$ and $[\mathrm{H}, \mathrm{Y}]$ and then for all $A=a_{1} H+a_{2} X+a_{3} Y \in \mathfrak{s l}(2, \mathbb{C})$.
ρ is irreducible:-Let $w=a_{0} u_{0}+a_{1} u_{1}+\ldots+a_{m} u_{m}$ be non zero element in a non-zero vector ρ-invariant subspace W of V^{\prime} let k_{0} be the least positive integer such that $a_{k_{0}} \neq 0$. Now observer that $\rho(X)^{j}\left(u_{k}\right)=0$ for all $j>k$. Thus $\rho(X)^{j}(\mathrm{w})$ is a non-zero multiple of u_{0} for sufficiently large j but not to large, and hence W contains u_{0}, Now apply $\rho(Y)$ on u_{0} we get all the basis elements in W . Thus $\mathrm{V}=\mathrm{W}$ and consequently V is irreducible. Now by Above calculation it is clear any two irreducible representation of dimension $m+1$ will look like equations 3 and hence isomorphic and hence upto isomorphism there is only one irreducible representation of $\mathfrak{s l}(2, \mathbb{C})$ and we have one such representation π_{m} which is constructed from $S U(2)$.Thus $\pi \cong \pi_{m}$.

Why the representation of $\mathfrak{s l}(2, \mathbb{C})$?

(1) To study the Representation of $\mathfrak{s l}(3, \mathbb{C})$, representation of $\mathfrak{s l}(2, \mathbb{C})$ is quite important since $\mathfrak{s l}(3, \mathbb{C})$ contains 2 copies of $\mathfrak{s l}(2, \mathbb{C})$. As the basis of $\mathfrak{s l}(3, \mathbb{C})$ is given by,

$$
\begin{gathered}
H_{1}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 0
\end{array}\right), H_{2}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1
\end{array}\right), \\
X_{1}=\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right), X_{2}=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right), X_{3}=\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \\
Y_{1}=\left(\begin{array}{lll}
0 & 0 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right), Y_{2}=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 1 & 0
\end{array}\right), Y_{3}=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
1 & 0 & 0
\end{array}\right)
\end{gathered}
$$

,Now $\operatorname{Span}\left(H_{1}, X_{1}, Y_{1}\right)$ and $\operatorname{Span}\left(H_{2}, X_{2}, Y_{2}\right)$ is isomorphic to $\mathfrak{s l}(2, \mathbb{C})$.

One to One correspondence between representation of

 matrix Lie group and Lie algebraIf $\Pi: G \rightarrow G L(V)$ is a finite dimensional irreducible representation of G.Then by the main theorem the corresponding representation of Lie algebra \mathfrak{g} of a matrix lie group is also irreducible.Now we ask Whether every irreducible representation of Lie algebra \mathfrak{g} comes from matrix lie group(here lie algebra comes from some matrix lie group) In general this is not the case.
Let's Observe the representation of $\mathfrak{s u}(2)$ Now irreducible representation of $\mathfrak{s u}(2)$ are in one to one correspondence with irreducible representation of $\mathfrak{s l}(2, \mathbb{C})$ and we have just proved that any irreducible representation of $\mathfrak{s l}(2, C)$ having dimension $\mathrm{m}+1$ is isomorphic to π_{m} which in turn comes from the representation Π_{m} of $S U(2)$ and Note that $\mathrm{SU}(2)$ is simply connected.

Representation of $S O(3)$ and its associated lie algebra so(3)

Now consider a lie algebra isomorphism $\phi: \mathfrak{s u}(2) \rightarrow \mathfrak{s o}(3)$ which sends $E_{1} \rightarrow F_{1}, E_{2} \rightarrow F_{2}$ and $E_{3} \rightarrow F_{3}$ where

$$
E_{1}=\frac{1}{2}\left(\begin{array}{cc}
i & 0 \\
0 & -i
\end{array}\right), E_{2}=\frac{1}{2}\left(\begin{array}{cc}
0 & i \\
i & 0
\end{array}\right), E_{3}=\frac{1}{2}\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)
$$

and,

$$
F_{1}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & -1 \\
0 & 1 & 0
\end{array}\right), F_{2}=\left(\begin{array}{ccc}
0 & 0 & 1 \\
0 & 0 & 0 \\
-1 & 0 & 0
\end{array}\right), F_{3}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & -1 \\
0 & 1 & 0
\end{array}\right)
$$

Now if σ is an irreducible representation of $\mathfrak{s o (3)}$ then $\sigma \circ \phi$ is irrep of $\mathfrak{s u}(2)$, thus $\sigma \circ \phi=\pi_{m}$ for unique m and hence $\sigma=\pi_{m} \circ \phi^{-1}$ and these are the only irreducible representation of $\mathfrak{s o (3)}$. But we can see that for odd m the representation $\sigma_{m}=\sigma$ can never be come from representation of matrix lie group $S O(3)$.

Cheers to all, you are free now !!

