REPRESENTATION OF $\mathfrak{sl}(2,\mathbb{C})$

Jitender Sharma

Graduate Student Seminar

Department of Mathematics and Statistics Indian Institute of Science Education and Research, Kolkata

September 12, 2022

< ロ > (四 > (四 > (四 > (四 >))) (四 > (四 >)) (四 > (四 >)) (四 >) (ص >) (

Definition of Lie algebra

Lie Algebra:- A finite dimensional real or complex lie algebra is a finite dimensional complex or real vector space \mathfrak{g} , together with a map $[\cdot, \cdot] : \mathfrak{g} \times \mathfrak{g} \to \mathfrak{g}$ such that the following properties holds ;

- 1 $[\cdot, \cdot]$ is bilinear.
- 2 $[\cdot, \cdot]$ is skew symmetric: [X, Y] = -[Y, X] for all $X, Y \in \mathfrak{g}$
- The Jacobi identity holds;

[X, [Y, Z]] + [Y, [Z, X]] + [Z, [X, Y]] = 0

for all $X, Y, Z \in \mathfrak{g}$.

Lie Subalgebra:- A subalgebra of a real or complex lie algebra \mathfrak{g} is a subspace \mathfrak{h} of \mathfrak{g} such that $[H_1, H_2] \in \mathfrak{h}$ for all $H_1, H_2 \in \mathfrak{h}$.

Ideal:- A subalgebra \mathfrak{h} of a lie algebra \mathfrak{g} is said to be **Ideal** in \mathfrak{g} if $[X, H] \in \mathfrak{h}$ for all $X \in \mathfrak{g}$ and $H \in \mathfrak{h}$.

A Lie algebra \mathfrak{g} is called **irreducible** if the only ideals in \mathfrak{g} are \mathfrak{g} and $\{0\}$. A Lie algebra \mathfrak{g} is called **Simple** if it is irreducible and dim $\mathfrak{g} \ge 2$.

 $\mathfrak{sl}(2,\mathbb{C})=\{X\in M_2(\mathbb{C})|\ trace(X)=0\},$ the bracket operation is given by

$$[X,Y] = XY - YX$$

Then $\mathfrak{sl}(2,\mathbb{C})$ is a lie complex lie algebra with respect to this bracket operation.

Some basic properties of $\mathfrak{sl}(2,\mathbb{C})$:-

- 1 dim $(\mathfrak{sl}(2,\mathbb{C}))=3$.
- **2** $\mathfrak{sl}(2,\mathbb{C})$ is simple.
- sl(2, C) is the isomorphic to the complexification of real lie algebra su(2) which comes from the lie group SU(2).

4
$$X = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, Y = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$$
 and $H = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ is a basis of $\mathfrak{sl}(2, \mathbb{C})$.
5 $[H, X] = 2X, [H, Y] = -2Y, [X, Y] = H.$

Definition:- If \mathfrak{g} is a real or complex lie algebra, then a **finite dimensional complex representation** of \mathfrak{g} is a lie algebra homomorphism π of \mathfrak{g} into $\mathfrak{gl}(V)$, where V is a finite dimensional complex vector space.

The notion of invariant subspace, irreducible representation, intertwining map is same as of group representations.

Important results

Proposition

Let G be a matrix lie group with lie algebra \mathfrak{g} and let \prod be a(finite dimensional real or complex) representation of G,acting on space V. Then there is a unique representation π of \mathfrak{g} acting on the same space V such that for all $X \in \mathfrak{g}$

$$\prod(e^X) = e^{\pi(X)}$$
 and $\pi(X) = rac{d}{dt}(\prod(e^{tX}))\Big|_{t=0}$

(日)

Proposition

Let G be a connected matrix Lie group with lie algebra g.Let \prod be a representation of G and π be the associated representation of g. Then \prod is irreducible if and only if π is irreducible.

Proposition

Let g be real lie algebra and $\mathfrak{g}_{\mathbb{C}}$ be its complexification. Then every finite dimensional complex representation π of g has a unique extension to complex linear representation of g,also denoted π . Furthermore, π is irreducible as a representation of $\mathfrak{g}_{\mathbb{C}}$ if and only if it is irreducible as a representation of g.

Representation of SU(2)

Let V_m be space of homogenous polynomial of degree m in two complex variable, that means elements of V_m look like,

$$f(z_1, z_2) = a_0 z_1^m + a_1 z_1^{m-1} z_2 + a_2 z_1^{m-2} z_2^2 + \ldots + a_m z_2^m$$

Where a_i are complex numbers. Clearly dim (V_m) =m+1. Now let us define the action of SU(2) on V_m . For each $U \in SU(2)$ define a linear transformation $\Pi_m(U)$ on the space V_m by the formula,

$$[\Pi_m(U)f]z = f(U^{-1}z)$$
 for $z \in \mathbb{C}^2$

This is indeed a representation of SU(2) that is we need to show $\Pi_m(U_1)(\Pi_m(U_2)) = \Pi_m(U_1U_2)$ now let $f \in V_m$ and $z \in \mathbb{C}^2$, then

$$\Pi_m(U_1)(\Pi_m(U_2)f)z = [\Pi_m(U_2)f](U_1^{-1}z)$$

= $f(U_2^{-1}U_1^{-1}z)$
= $[\Pi_m(U_1U_2)f]z$

Hence Π_m is indeed a m+1 dimensional representation of SU(2)

Now the associated representation π_m of $\mathfrak{su}(2)$ is given by

$$\pi_m(X) = \frac{d}{dt} \Pi_m(e^{tX})\big|_{t=0}$$

Now $\pi_m(X)$ is a map from V_m to V_m , thus

$$\left(\pi_m(X)f\right)z = \frac{d}{dt}(\Pi_m(e^{tX})f)z\Big|_{t=0} = \frac{d}{dt}f(e^{-tX}z)\Big|_{t=0}$$

Here calculation is bit long so i will skip this calculation and state the important results,

Proposition

For each $m \ge 0$, the representation π_m is irreducible.

Representation of $\mathfrak{sl}(2,\mathbb{C})$

Now first let fix the basis of $\mathfrak{sl}(2,\mathbb{C})$, $X = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, $Y = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$ and

 $H = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ which have commutation relations, [H, X] = 2X, [H, Y] = -2Y, [X, Y] = H. **Basic idea**:- Now previously while dealing with representation SU(2) and its lie algebra $\mathfrak{su}(2)$ for each $m \ge 0$ there is a irreducible representation π_m of $\mathfrak{sl}(2, C)$ having dimension m+1.Now what we will show now that this are the only irreducible representation of $\mathfrak{sl}(2, \mathbb{C})$, here is the main result

Theorem

For each $m \ge 0$, there is an irreducible complex representation of $\mathfrak{sl}(2,\mathbb{C})$ with dimension m+1. Any two irreducible complex representations of $\mathfrak{sl}(2,\mathbb{C})$ with same dimension are isomorphic. If π is an irreducible complex representation of $\mathfrak{sl}(2,\mathbb{C})$ with dimension m+1, then π is isomorphic to representation π_m .

Lemma

Let u be an eigenvector of $\pi(H)$ with an eigenvalue $\alpha \in \mathbb{C}$. Then we have

$$\pi(H)\pi(X)u=(\alpha+2)\pi(X)u$$

Thus either $\pi(X)u = 0$ or $\pi(X)u$ is an eigenvector for $\pi(H)$ with eigenvalue $\alpha + 2$.Similarly,

$$\pi(H)\pi(Y)u = (\alpha - 2)\pi(Y)u$$

Thus either $\pi(Y)u = 0$ or $\pi(Y)u$ is an eigenvector for $\pi(H)$ with eigenvalue $\alpha - 2$

Proof.

Now π is a Lie algebra homomorphism then, $\pi([H, X]) = [\pi(H), \pi(X)]$ and hence

$$\pi(2X) = \pi(H)\pi(X) - \pi(X)\pi(H)$$

$$2\pi(X)(u) = \pi(H)(\pi(X)u) - \pi(X)(\pi(H)u)$$

$$= \pi(H)(\pi(X)u) - \alpha\pi(X)u$$

And thus we get the desired result. Similar calculation we can do on [H, Y] to get second result.

Classifying the irrep representation of $\mathfrak{sl}(2,\mathbb{C})$

Now the basic strategy is to diagonalize $\pi(H)$ in some nice way.Since we are working over finite dimensional complex vector space there must be an eigenvector of $\pi(H)$ say u corresponding to eigenvalue $\alpha \in \mathbb{C}$.Now if we apply repeatedly the previous lemma, we get

$$\pi(H)(\pi(X)^k u) = (\alpha + 2k)(\pi(X)^k u), k \ge 0$$

Since α is fixed and so for two different k_1 and k_2 , $\alpha + 2k_1 \neq \alpha + 2k_2$. Now if all of $\pi(X)^k u \neq 0$ then we will get infinitely many linearly independent vectors which is not possible in finite dimensional vector space. Thus there is some $N \geq 0$ such that

$$\pi(X)^N u \neq 0$$

But,

$$\pi(X)^{N+1}u=0$$

Now let's say, $u_0 = \pi(X)^N u$ and $\lambda = \alpha + 2N$, then,

$$\pi(H)u_0 = \lambda u_0$$
$$\pi(X)u_0 = 0$$

Continue the proof

Now let us define

$$u_k = \pi(Y)^k u_0$$

for $k \ge 0$. Now u_0 is an eigenvector for $\pi(H)$ corresponding to eigenvalue λ . Similarly if we apply lemma repeatedly for this eigenvector we get,

$$\pi(H)u_k = (\lambda - 2k)u_k$$

Now we will see the action of u_k on $\pi(X)$, for k = 1 by using the fact that $\pi(X)u_0 = 0$ and commutator relation,

$$\pi(X)u_1 = \pi(X)(\pi(Y)u_0) = \pi(H)u_0 + \pi(Y)(\pi(X)u_0) = \lambda u_0$$

In genral,

$$\pi(X)u_{k} = k(\lambda - (k-1))u_{k-1}, k \ge 1$$
(2)

Let's do some more calculation

Now let us prove the equation 2 by induction, first observe that $u_{k+1} = \pi(Y)^{k+1}u_0 = \pi(Y)(\pi(Y)^k u_0) = \pi(Y)u_k$ Now, by using the induction hypothesis and commutator relation we get

$$\begin{aligned} \pi(X)(\pi(Y)u_k) &= \pi(H)u_k + \pi(Y)(\pi(X)u_k) \\ &= (\lambda - 2k)u_k + \pi(Y)([k(\lambda - (k - 1))]u_{k-1}) \\ &= (\lambda - 2k)u_k + [k(\lambda - (k - 1))]\pi(Y)(u_{k-1}) \\ &= (\lambda - 2k)u_k + [k(\lambda - (k - 1))](u_k) \\ &= (k + 1)(\lambda - k)u_k \\ &= (k + 1)(\lambda - ((k + 1) - 1)u_k \\ \pi(X)u_{k+1} &= (k + 1)(\lambda - ((k + 1) - 1)u_k \end{aligned}$$

Hence we get,

$$\pi(X)u_k = k(\lambda - (k-1))u_{k-1}$$

Since, $\pi(H)u_k = (\lambda - 2k)u_k$ and $\pi(H)$ has only finitely many eigenvalues, all $u'_k s$ cannot be non zero. So there must be a non-negative integer m such that

$$u_k = \pi(Y)^k u_0 \neq 0$$

for all $k \leq m$, but

$$u_{m+1} = \pi(Y)^{m+1}u_0 = 0$$

Now $u_{m+1} = 0$, then $\pi(X)u_{m+1} = 0$ which in turn means that $(m+1)(\lambda - m)u_m = 0$, since $u_m \neq 0$ and m+1 is non zero imply that $\lambda = m$.

Finally for every representation (π, V) , there exists an integer $m \ge 0$ and non-zero vectors u_0, u_1, \ldots, u_m such that

$$\pi(H)u_{k} = (m-2k)u_{k}$$

$$\pi(Y)u_{k} = \begin{cases} u_{k+1}, & k < m \\ 0, & k=m \end{cases}$$
(3)
$$\pi(X)u_{k} = \begin{cases} k(m-(k-1))u_{k-1}, & k > 0 \\ 0, & k=0 \end{cases}$$

Remark

Note that till now we have not used irreducibility of π .

< ロト < 同ト < ヨト < ヨト

Almost near the shore, Really !!

Now we know that eigenvectors corresponding to distinct eigenvalues are linearly independent, thus $u_0, u_1 \dots u_m$ forms a linearly independent set in V.Let $W = Span\{u_0, u_1 \dots u_m\}$, then dim(W)=m+1 also each basis element of W under $\pi(H), \pi(X), \pi(Y)$ maps to some scalar multiple of basis hence can we conclude that $\pi(A)W \subset W$ for all $A \in \mathfrak{sl}(2, \mathbb{C})$. Now π is irreducible imply that W=V.

Finally if we take any irreducible representation we know how it will look like by equation 3. Conversely we can ask whether there exists such a irreducible representation. Not let us define the representation ρ on a m+1 dimensional complex vector space V' having basis u_0, u_1, \ldots, u_m

$$\rho(H)u_{k} = (m - 2k)u_{k}$$

$$\rho(Y)u_{k} = \begin{cases} u_{k+1}, & k < m \\ 0, & k=m \end{cases}$$

$$\rho(X)u_{k} = \begin{cases} k(m - (k - 1))u_{k-1}, & k > 0 \\ 0, & k=0 \end{cases}$$
(4)

Jitender Sharma (IISER Kolkata)

ho is an irreducible representation of V'

Now we will show ρ is a lie algebra homomorphism for that first we will show bracket operation will preserved by [X,Y], [H,X] and [H.Y] under ρ ,Since H, X, Y be basis so we are done.Now, $\rho([X, Y]) = [\rho(X), \rho(Y)]$ which in turn imply $\rho(H) = \rho(X)\rho(Y) - \rho(Y)\rho(X)$.Now consider three different cases;

Case 1 Acting on u₀:-Then $\rho(H)u_0 = mu_0$ and $(\rho(X)\rho(Y) - \rho(Y)\rho(X))u_0 = \rho(X)(u_1) = mu_0$ and hence LHS=RHS.

Case 2 Acting on u_m:-Then $\rho(H)u_m = -mu_m$ and $(\rho(X)\rho(Y) - \rho(Y)\rho(X))u_m = -\rho(Y)(mu_{m-1}) = -m\rho(Y)(u_m) = -mu_m$.Again LHS=RHS.

Case 3 Acting on u_k, **0** < k < m:- Now $\rho(H)u_k = (m - 2k)u_k$ and $(\rho(X)\rho(Y) - \rho(Y)\rho(X))u_k = \rho(X)(u_{k+1}) - \rho(Y)(k(m - (k - 1))u_{k-1}) = (k + 1)(m - k)u_k - (k(m - (k - 1))\rho(Y)(u_k) = (mk - k^2 + m - k - k(m - k + 1))u_k = (mk - k^2 + m - k - mk + k^2 - k)u_k = (m - 2k)u_k$ Again LHS=RHS.

Jitender Sharma (IISER Kolkata)

Final discussion

Hence $\rho([X, Y]) = [\rho(X), \rho(Y)]$ for X, Y in V' since both of them are linear transformation and agree on the basis elements. Similarly we can verify for [H,X] and [H,Y] and then for all $A = a_1H + a_2X + a_3Y \in \mathfrak{sl}(2, \mathbb{C}).$

 ρ is irreducible:-Let $w = a_0 u_0 + a_1 u_1 + \ldots + a_m u_m$ be non zero element in a non-zero vector ρ -invariant subspace W of V' let k_0 be the least positive integer such that $a_{k_0} \neq 0$. Now observer that $\rho(X)^j(u_k) = 0$ for all j > k. Thus $\rho(X)^{j}(w)$ is a non-zero multiple of u_0 for sufficiently large j but not to large, and hence W contains u_0 , Now apply $\rho(Y)$ on u_0 we get all the basis elements in W.Thus V=W and consequently V is irreducible. Now by Above calculation it is clear any two irreducible representation of dimension m+1 will look like equations 3 and hence isomorphic and hence upto isomorphism there is only one irreducible representation of $\mathfrak{sl}(2,\mathbb{C})$ and we have one such representation π_m which is constructed from SU(2). Thus $\pi \cong \pi_m$. イロト 不得 トイヨト イヨト 二日

Why the representation of $\mathfrak{sl}(2,\mathbb{C})$?

 To study the Representation of sl(3, C), representation of sl(2, C) is quite important since sl(3, C) contains 2 copies of sl(2, C). As the basis of sl(3, C) is given by,

$$H_{1} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix}, H_{2} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix},$$
$$X_{1} = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, X_{2} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}, X_{3} = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
$$Y_{1} = \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, Y_{2} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}, Y_{3} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}$$

,Now Span (H_1, X_1, Y_1) and Span (H_2, X_2, Y_2) is isomorphic to $\mathfrak{sl}(2, \mathbb{C})$.

If $\Pi: G \to GL(V)$ is a finite dimensional irreducible representation of G.Then by the main theorem the corresponding representation of Lie algebra \mathfrak{g} of a matrix lie group is also irreducible.Now we ask Whether every irreducible representation of Lie algebra \mathfrak{g} comes from matrix lie group(here lie algebra comes from some matrix lie group) In general this is not the case.

Let's Observe the representation of $\mathfrak{su}(2)$ Now irreducible representation of $\mathfrak{su}(2)$ are in one to one correspondence with irreducible representation of $\mathfrak{sl}(2,\mathbb{C})$ and we have just proved that any irreducible representation of $\mathfrak{sl}(2, \mathbb{C})$ having dimension m+1 is isomorphic to π_m which in turn comes from the representation Π_m of SU(2) and Note that SU(2) is simply connected.

Representation of SO(3) and its associated lie algebra $\mathfrak{so}(3)$

Now consider a lie algebra isomorphism $\phi : \mathfrak{su}(2) \to \mathfrak{so}(3)$ which sends $E_1 \to F_1, E_2 \to F_2$ and $E_3 \to F_3$ where

$$E_{1} = \frac{1}{2} \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}, E_{2} = \frac{1}{2} \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}, E_{3} = \frac{1}{2} \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$

and,

$$F_1 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix}, F_2 = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ -1 & 0 & 0 \end{pmatrix}, F_3 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix}$$

Now if σ is an irreducible representation of $\mathfrak{so}(3)$ then $\sigma \circ \phi$ is irrep of $\mathfrak{su}(2)$, thus $\sigma \circ \phi = \pi_m$ for unique m and hence $\sigma = \pi_m \circ \phi^{-1}$ and these are the only irreducible representation of $\mathfrak{so}(3)$. But we can see that for odd m the representation $\sigma_m = \sigma$ can never be come from representation of matrix lie group SO(3).

Jitender Sharma (IISER Kolkata)

Cheers to all, you are free now !!