On extension of Calderón-Zygmund Type Singular Integrals and their commutators

Joydwip Singh

Department of Mathematics and Statistics IISER Kolkata

September 2, 2022

Extension of CZ Type Singular Integral

September 2, 2022

In today's talk we first study classical Calderón-Zygmund singular integral. Then we define an extension of it. We will estimate this extension Calderón-Zygmund type singular integral on various spaces and from where we deduce boundedness of classical Calderón-Zygmund singular integral on those spaces. At last we will discuss about some open problems in this direction.

2/30

イロト イポト イヨト イヨト

Preliminaries

- For $1 \le p < \infty$ we say $f \in L^p(\mathbb{R}^n)$ if $\int_{\mathbb{R}^n} |f(x)|^p dx < \infty$.
- For f, g a suitable class of functions (i.e. take f, g ∈ L¹(ℝⁿ)), we define

$$f * g(x) = \int_{\mathbb{R}^n} f(x-y)g(y)dy.$$

 The Schwartz space or the space of rapidly decreasing functions, S, is given by

$$\mathcal{S} = \{ f \in C^{\infty}(\mathbb{R}^n) : \lim_{|x| \to \infty} |x^{\beta} D^{\alpha} f(x)| = 0, \ \ orall lpha, eta \in \mathbb{N}^n \}.$$

Example

•
$$C_c^{\infty}(\mathbb{R}^n) \subset \mathcal{S}(\mathbb{R}^n).$$

• $\exp(-|x|^2) \in \mathcal{S}(\mathbb{R}^n)$

Extension of CZ Type Singular Integrals

September 2, 2022

Suppose $f \in L^{p}(\mathbb{R})$ $(1 \le p < \infty)$. Consider the Cauchy integral on \mathbb{R} :

$$F(z)=\frac{1}{2\pi i}\int_{\mathbb{R}}\frac{f(t)}{t-z}dt,$$

where z = x + iy, y > 0. It is easy to see that F(z) is analytic on \mathbb{R}^2_+ . Note that

$$F(z) = \frac{1}{2\pi} \int_{\mathbb{R}} \frac{y}{(x-t)^2 + y^2} f(t) dt + \frac{i}{2\pi} \int_{\mathbb{R}} \frac{x-t}{(x-t)^2 + y^2} f(t) dt$$

$$:= \frac{1}{2} \left[(P_y * f)(x) + i(Q_y * f)(x) \right],$$

where $P_y(t) = \frac{1}{\pi} \frac{y}{t^2+y^2}$ is called Poisson kernel and $Q_y(t) = \frac{1}{\pi} \frac{t}{t^2+y^2}$ is called conjugate Poisson kernel.

Note that $P_y(t) = \frac{1}{\pi} \frac{y}{t^2 + y^2}$ has the following properties.

- $P_y(t) > 0 \quad \forall t \in \mathbb{R} \text{ and } y \in \mathbb{R}^+.$
- $\int_{-\infty}^{\infty} P_y(t) dt = 1.$
- As $y \to 0$, $P_y(t) \to \delta$, Dirac measure at the origin in \mathcal{S}' .

 $\lim_{y\to 0} P_y * g(t) = g(t).$

Then for $g \in S$, we have the pointwise limit

Figure: Poisson kernel

Because of this we say that $\{P_y\}$ is an approximation of the identity.

We would like to do the same for $Q_y(t) = \frac{1}{\pi} \frac{t}{t^2+y^2}$, but we immediately run into an obstacle: $\{Q_y\}$ is not an approximation of identity and, in fact, Q_y is not integrable for any y > 0. Formally,

$$\lim_{y\to 0}Q_y(t)=\frac{1}{\pi t}.$$

Figure: Conjugate Poisson kernel

• We define a 'tempered distribution' called the principal value of 1/x, by

$$p.v.rac{1}{x}(\phi) = \lim_{\epsilon \to 0} \int_{|x| > \epsilon} rac{\phi(x)}{x} dx, \ \phi \in \mathcal{S}.$$

- Then one can show that, $\lim_{y\to 0} Q_y(x) = \frac{1}{\pi} p.v.\frac{1}{x}$ in S'.
- As a consequence we get

$$\lim_{y\to 0} Q_y * f(x) = \frac{1}{\pi} p.v.\frac{1}{x} * f = \frac{1}{\pi} \lim_{\epsilon\to 0} \int_{|t|>\epsilon} \frac{f(x-t)}{t} dt.$$

7/30

<ロト < 回 > < 回 > < 回 >

Hilbert transform

Given a function $f \in S$, we define Hilbert transform on \mathbb{R} by

$$Hf(x) = \frac{1}{\pi}p.v.\int_{\mathbb{R}}\frac{f(y)}{x-y}dy = \frac{1}{\pi}p.v.\int_{\mathbb{R}}\frac{1}{y}f(x-y)dy.$$

Note that we can write

$$Hf(x) = \frac{1}{\pi}p.v.\int_{\mathbb{R}}\frac{sgn(y)}{|y|}f(x-y)dy.$$

Then we have

- sgn(ry) = sgn(y) for r > 0 and $y \neq 0$. So it is enough to define it on $S^0 = \{1, -1\}$.
- $sgn(y') \in L^{\infty}(S^0)$.
- $\int_{S^0} sgn(y') d\sigma(y') = 0.$

Calderón-Zygmund (CZ) type singular integral

More generally for $f \in S(\mathbb{R}^n)$, we can define Calderón-Zygmund type singular integral by

$$Tf(x) = p.v. \int_{\mathbb{R}^n} \frac{\Omega(y)}{|y|^n} f(x-y) \, dy,$$

where Ω is assumed to satisfy the following conditions:

 $\begin{cases} \Omega \in L^{\infty}(S^{n-1}), & (L^{\infty}\text{-bounded}) \\ \Omega(rx') = \Omega(x'), & (\text{homogeneous of degree 0}) & (1) \\ \int_{S^{n-1}} \Omega(x') \, d\sigma(x') = 0, & (\text{cancellation}), \end{cases}$

for every r > 0, with S^{n-1} denoting the unit sphere $\{x' \in \mathbb{R}^n : |x'| = 1\}$.

<ロト < 母 > < 臣 > < 臣 > 三 の へ で 9/30

A function Ω is said to satisfy Dini type condition if

$$\int_0^1 \frac{\omega_\infty(\delta)}{\delta} \, d\delta < \infty,\tag{2}$$

where $\omega_{\infty}(\delta) := \sup\left\{\left|\Omega(x') - \Omega(y')\right| : \left|x' - y'\right| \le \delta, |x'| = |y'| = 1\right\}.$

Example

- If we take $\Omega(x) = sgn(x)$ then it will be Hilbert transform.
- Take $\Omega(x) = x_j/|x|$ with j = 1, 2, ..., n, then it is called Riesz transform.

It is not difficult to verify that both the function satisfies the conditions (1) and (2).

Theorem ([LDY07])

Let T be a Calderón-Zygmund operator and Ω satisfies condition (1) and (2) then T is 'strong' (p, p) for 1 i.e.

 $||Tf||_{L^p} \leq C ||f||_{L^p}.$

Theorem ([LDY07])

Let T be a Calderón-Zygmund operator and Ω satisfies condition (1) and (2) then T is 'strong' (p, p) for 1 i.e.

 $||Tf||_{L^p} \leq C ||f||_{L^p}.$

Endpoint estimate

Calderón-Zygmund operator is not bounded in L^1 or L^{∞} , but one can show that $T: H^1 \to L^1$ and $L^{\infty} \to BMO$ are bounded.

11/30

Now consider Calderón-Zygmund commutator [b, T] generated by a Calderón-Zygmund type singular integral T and a measurable function b on \mathbb{R}^n is defined by

$$[b, T]f(x) := b(x)Tf(x) - T(bf)(x) = p.v. \int_{\mathbb{R}^n} \frac{\Omega(x-y)}{|x-y|^n} [b(x) - b(y)]f(y) \, dy.$$

where $f \in S$, and Ω satisfies (1).

BMO space

Consider the Fefferman–Stein sharp maximal function, $M^{\sharp}f$ of f given by

$$M^{\sharp}f(x) := \sup_{x \in Q} \frac{1}{|Q|} \int_{Q} |f(y) - f_{Q}| dy,$$

where the supremum is taken over all cubes $Q \subset \mathbb{R}^n$ containing x and $f_Q = \frac{1}{|Q|} \int_Q f(y) dy$, which is called the average of f.

Definition

Define

$$BMO := \{ f \in L^1_{loc}(\mathbb{R}^n) : M^{\#}f \in L^{\infty} \},$$

with the norm of $f \in BMO$ (upto a difference by constants) given by

$$||f||_{BMO} := ||M^{\#}f||_{L^{\infty}}.$$

13/30

10 B

Example

- Clearly $L^{\infty} \subset BMO$.
- But there also unbounded BMO functions, i.e. $log(|x|) \in BMO(\mathbb{R}^n)$.

14/30

▲ 伊 ト ▲ 三 ト ▲

Example

- Clearly $L^{\infty} \subset BMO$.
- But there also unbounded BMO functions, i.e. $log(|x|) \in BMO(\mathbb{R}^n)$.

Definition

For $0 < \gamma < 1$, the homogeneous Lipschitz space $Lip_{\gamma}(\mathbb{R}^n)$ consists of functions f on \mathbb{R}^n satisfying

$$\|f\|_{Lip_{\gamma}}:=\sup_{\substack{x,y\in\mathbb{R}^n\x
eq y}}rac{|f(x)-f(y)|}{|x-y|^{\gamma}}<\infty.$$

Joydwip Singh

Extension of CZ Type Singular Integrals

▲ E → A
 September 2, 2022

Theorem ([LDY07])

Let [b, T] be the Calderón-Zygmund commutator and Ω satisfies condition (1) and (2) then

- $b \in BMO$ iff [b, T] is strong (p, p) for 1 .
- $b \in Lip_{\gamma}(\mathbb{R}^n)$ iff [b, T] is strong (p, q) for $1 and <math>1/q = 1/p \gamma/n$.

Theorem ([LDY07])

Let [b, T] be the Calderón-Zygmund commutator and Ω satisfies condition (1) and (2) then

- $b \in BMO$ iff [b, T] is strong (p, p) for 1 .
- ② $b \in Lip_{\gamma}(\mathbb{R}^n)$ iff [b, T] is strong (p, q) for $1 and <math>1/q = 1/p \gamma/n$.

Endpoint estimate

• For $b \in BMO$, [b, T] is not (H^1, L^1) , but it is 'weak' (H^1, L^1) .

e For b ∈ Lip_γ, [b, T] is of (H^p, L^q) type if n/(n + γ) 1/q = 1/p - γ/n.

15/30

Extension of CZ type singular integrals and its commutators

Let $f \in S$ and Ω as early.

 We consider the following extension of CZ type singular integrals defined, for 0 < β < n, by

$$T_{\beta}f(x) = p.v. \int_{\mathbb{R}^n} \frac{\Omega(y)}{|y|^{n-\beta}} f(x-y) \, dy.$$

• We also consider the following extension of the commutator of the CZ type operator defined by,

$$egin{aligned} &[b,T_{eta}]f(x) := b(x)T_{eta}f(x) - T_{eta}(bf)(x) \ &= p.v.\int_{\mathbb{R}^n}rac{\Omega(x-y)}{|x-y|^{n-eta}}[b(x)-b(y)]f(y)\,dy. \end{aligned}$$

Theorem ([LDY07])

Suppose $0 < \beta < n$ and Ω satisfies all the hypothesis as above. Let $\frac{1}{q} = \frac{1}{p} - \frac{\beta}{n}$ and $f \in L^p(\mathbb{R}^n)$ for 1 , then

 $\|T_{\beta}(f)\|_{L^q}\leq C_{\beta}\|f\|_{L^p}.$

17/30

・ロト ・ 四ト ・ ヨト ・ ヨト ・

Theorem ([LDY07])

Suppose $0 < \beta < n$ and Ω satisfies all the hypothesis as above. Let $\frac{1}{q} = \frac{1}{p} - \frac{\beta}{n}$ and $f \in L^p(\mathbb{R}^n)$ for 1 , then $<math>\|T_{\beta}(f)\|_{L^q} \leq C_{\beta} \|f\|_{L^p}.$

Theorem ([LDY07])

- For $b \in BMO$ we have $\|[b, T_{\beta}]f\|_{L^q} \leq C_{\beta}\|f\|_{L^p}$, for $0 < \beta < n$ and $1 such that <math>\frac{1}{p} \frac{1}{q} = \frac{\beta}{n}$.
- For b ∈ Lip_γ(ℝⁿ) we have $\|[b, T_{\beta}]f\|_{L^q} ≤ C_{\beta}\|b\|_{Lip_{\gamma}}\|f\|_{L^p}$, for
 0 < β < n, 0 < γ < 1, and 1 < p < q < ∞ such that $\frac{1}{p} \frac{1}{q} = \frac{\gamma}{p} + \frac{\beta}{p}$.

◆□ ▶ < 畳 ▶ < Ξ ▶ < Ξ ▶ Ξ の Q ↔ 17/30</p>

- Formally T_{β} and $[b, T_{\beta}]$ becomes CZ type singular integral and its commutator respectively when $\beta = 0$.
- Note that in the last theorem all the constant C_β depends on β and one can check that if we take β → 0 the constant become unbounded. So we can not recover boundedness result of T from boundedness of T_β by taking β → 0.
- So our problem is to find an uniform estimate of T_{β} and $[b, T_{\beta}]$ with respect to $\beta > 0$, such that strong boundedness of T and [b, T] can be recovered when $\beta \to 0$.

のへで 18/30

Positive result for L^p

Recently [YJL21] proved the following boundedness result.

Theorem

Let $0 < \beta_0 < \frac{1}{2}$ be any fixed and small number. Then for any $f \in L^1(\mathbb{R}^n) \cap L^q(\mathbb{R}^n)$ with $1 < q < \infty$ there exists constant C independent of β such that

$$\|T_{\beta}f\|_{L^{q}} \leq C\left(\|f\|_{L^{q}} + \frac{\beta^{\frac{(q-1)n}{q}}}{\sqrt[q]{(n(q-1) - \beta q)}}\|f\|_{L^{1}}\right)$$

holds uniformly for $\varepsilon > 0$ and $0 < \beta < \min \left\{ 1 - \beta_0, \frac{(q-1)n}{q} \right\}$.

Now we want to extend this result for $p \leq 1$. For $p \leq 1$, L^p spaces are not well behaved for boundedness of singular integral, the spaces that are much better suited to a host of question in harmonic analysis is H^p (Hardy spaces).

Definition

Let 0 , <math>p < q, and $s \ge \left[n(\frac{1}{p}-1)\right]$. A (p, q, s)-atom centered at x_0 is a function $a \in L^q(\mathbb{R}^n)$ supported on a ball $B \subset \mathbb{R}^n$ with centre x_0 and satisfying,

$$\|a\|_{L^q} \le |B|^{\frac{1}{q} - \frac{1}{p}},$$

$$\int_{\mathbb{R}^n} a(x) x^{\alpha} \, dx = 0, \text{ for all } |\alpha| \le s.$$

Definition

Given $0 , the Hardy space <math>H^p$ consists of all tempered distributions f admitting a decomposition $f = \sum_j \lambda_j a_j$, where a_j are (p, q, s)-atoms and $\sum_j |\lambda_j|^p < \infty$.

We also define $||f||_{H^p} := \inf\left(\sum_{i} |\lambda_j|^p\right)^{1/p}$, with the infimum being

taken over all admissible representations $f = \sum_{i} \lambda_{j} a_{j}$.

Example

Let f be an odd function and $supp(f) \subset [-1,1]$ with $|f(x)| \leq \frac{1}{2}$. Then $f \in H^1$.

In some of our results, we shall also need the following stronger Dini type condition: for some $\alpha \in (0, 1]$,

$$\int_{0}^{1} \frac{\omega_{\infty}(\delta)}{\delta^{1+\alpha}} \, d\delta < \infty \tag{3}$$

where $\omega_{\infty}(\delta) := \sup\left\{\left|\Omega(x') - \Omega(y')\right| : \left|x' - y'\right| \le \delta, |x'| = |y'| = 1\right\}.$

Example

One can show that Riesz kernel $\Omega(x) = x_j/|x|$ with j = 1, 2, ..., n, satisfies the condition (3).

Joydwip Singh

Extension of CZ Type Singular Integrals

September 2, 2022

It is well known that the dual of the Hardy space H^p $(0 is Lipschitz space <math>Lip_{n(\frac{1}{p}-1)}$ whenever $\frac{n}{n+1} .$

Theorem ([BGS22])

Let Ω satisfy conditions (1) and (3) for some $0 < \alpha \le 1$. If $\frac{n}{n+\alpha} are such that <math>\frac{1}{p} + \frac{1}{q} = 2$, then there exists a constant C > 0 such that

$$\|T_{\beta}f\|_{Lip_{n(\frac{1}{p}-1)}} \leq C\left(\|f\|_{Lip_{n(\frac{1}{p}-1)}} + \frac{\beta^{\frac{(q-1)n}{q}}}{\sqrt[q]{(n(q-1)-\beta q)}}\|f\|_{BMO}\right).$$

holds true for all $f \in Lip_{n(\frac{1}{p}-1)} \cap BMO$ and $0 < \beta < \frac{(q-1)n}{q}$.

We have the following estimates of operators T_{β} on Hardy spaces H^{p} , with error term taken in other Hardy spaces.

Theorem ([BGS22])

Let Ω satisfy conditions (1) and (3) for some $0 < \alpha \le 1$. Given $\frac{n}{n+\alpha} < m < p \le 1$, let q > 1 be such that $\frac{1}{m} - \frac{1}{p} = 1 - \frac{1}{q}$. Then there exists a constant C > 0 such that

$$\|T_{\beta}f\|_{H^{p}} \leq C\left(\|f\|_{H^{p}} + \frac{\beta^{\frac{(q-1)n}{q}}}{\sqrt[q]{(n(q-1) - \beta q)}}\|f\|_{H^{m}}\right)$$

holds true for every $0 < \beta < \frac{(q-1)n}{q}$ and for any $f \in H^p \cap H^m$.

Theorem ([BGS22])

Let Ω satisfy conditions (1) and (2). If $1 < r < p < \infty$ and 0 < l < n are such that $\frac{1}{p} = \frac{1}{r} - \frac{l}{n}$, then there exists a constant C > 0 such that

$$\|[b, T_{\beta}]f\|_{L^{p}} \leq C \|b\|_{BMO} \left(\|f\|_{L^{p}} + \frac{\beta^{n(1-\frac{1}{p})}}{\sqrt[p]{n(p-1) - \beta p}} \|f\|_{L^{1}} + \frac{\beta^{l}}{(l-\beta)^{1-\frac{l}{n}}} \|f\|_{L^{r}} \right)$$

 $L^r(\mathbb{R}) \cap L(\mathbb{R})$, and 0 < p

の へ (~ 25/30

Theorem ([BGS22])

Let Ω satisfy conditions (1) and (2). If $1 and <math>0 < \gamma < 1$ be such that $\frac{1}{q} = \frac{1}{p} - \frac{\gamma}{n}$, then there exists a constant C > 0 such that

$$\|[b, T_{\beta}]f\|_{L^{q}} \leq C \|b\|_{L^{p}\gamma} \left(\|f\|_{L^{p}} + \frac{\beta^{n(1-\frac{1}{q})-\gamma}}{\sqrt[q]{n(q-1)-(\beta-\gamma)q}} \|f\|_{L^{1}} \right)$$

holds true for all $b \in Lip_{\gamma}(\mathbb{R}^n)$, $f \in L^p(\mathbb{R}^n) \cap L^1(\mathbb{R}^n)$, and $0 < \beta < n(1 - \frac{1}{q}) - \gamma$.

Theorem ([BGS22])

Let Ω satisfy conditions (1) and (3) for some $0 < \alpha < 1$, and let $b \in Lip_{\alpha}(\mathbb{R}^{n})$. If $\frac{n}{n+\alpha} be such that <math>\frac{1}{q} = \frac{1}{p} - \frac{\alpha}{n}$, then there exists a constant C > 0 such that

$$\|[b, T_{\beta}]f\|_{L^{q}} \leq C \|b\|_{L^{p}_{\alpha}} \left(\|f\|_{H^{p}} + \frac{\beta^{n(1-\frac{1}{q})-\alpha}}{\sqrt[q]{n(q-1)-(\beta-\alpha)q}} \|f\|_{L^{1}} \right)$$

holds true for all $f \in H^p(\mathbb{R}^n) \cap L^1(\mathbb{R}^n)$, and $0 < \beta < n(1 - \frac{1}{q}) - \alpha$.

Further open problem

 Calderón's conjucture: Consider the bilinear Hilbert transform defined by

$$Hfg(x) = p.v. \int_{\mathbb{R}} f(x-y)g(x+y)\frac{dy}{y}$$

Is H maps $L^p \times L^q$ into L^r for $1 < p, q \le \infty, 1/p + 1/q = 1/r$?

- **2** This result is known to be true for $1 < p, q \le \infty, 2/3 < r < \infty$.
- Similarly one can consider *directional m-linear Hilbert transform* defined by

$$\mathcal{H}_{\theta}(f_1,\ldots,f_m)(x) = \int_{\mathbb{R}} f_1(x-t\theta_1)\ldots f_m(x-t\theta_m)\frac{dt}{t}.$$

Is \mathcal{H}_{θ} bounded from $L^{p_1}(\mathbb{R}^n) \times \ldots L^{p_m}(\mathbb{R}^n)$ into $L^p(\mathbb{R}^n)$ uniformly in θ when $1 < p_1, \ldots, p_m, p < \infty$ satisfy $1/p_1 + \ldots 1/p_m = 1/p$?

• The question has been answered so far only when m = 2 and n = 1.

- Sayan Bagchi, Rahul Garg, and Joydwip Singh, On extension of calderón-zygmund type singular integrals and their commutators, arXiv preprint arXiv:2204.12161 (2022).
- Shanzhen Lu, Yong Ding, and Dunyan Yan, Singular integrals and related topics, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2007. MR 2354214
- Huan Yu, Quansen Jiu, and Dongsheng Li, An extension of Calderón-Zygmund type singular integral, J. Funct. Anal. 280 (2021), no. 5, Paper No. 108887, 22. MR 4186659

Thank You!

Ð. September 2, 2022

500

30/30

イロト イロト イヨト イヨト