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Goal

In today’s talk we first study classical Calderón-Zygmund singular integral.
Then we define an extension of it. We will estimate this extension Calderón-
Zygmund type singular integral on various spaces and from where we de-
duce boundedness of classical Calderón-Zygmund singular integral on those
spaces. At last we will discuss about some open problems in this direction.
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Preliminaries

For 1 ≤ p < ∞ we say f ∈ Lp(Rn) if
∫
Rn |f (x)|pdx < ∞.

For f , g a suitable class of functions (i.e. take f , g ∈ L1(Rn)), we
define

f ∗ g(x) =
∫
Rn

f (x − y)g(y)dy .

The Schwartz space or the space of rapidly decreasing functions, S, is
given by

S = {f ∈ C∞(Rn) : lim
|x |→∞

|xβDαf (x)| = 0, ∀α, β ∈ Nn}.

Example

1 C∞
c (Rn) ⊂ S(Rn).

2 exp(−|x |2) ∈ S(Rn).
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Motivation to define singular integral

Suppose f ∈ Lp(R) (1 ≤ p < ∞). Consider the Cauchy integral on R:

F (z) =
1

2πi

∫
R

f (t)

t − z
dt,

where z = x + iy , y > 0. It is easy to see that F (z) is analytic on R2
+.

Note that

F (z) =
1

2π

∫
R

y

(x − t)2 + y2
f (t)dt +

i

2π

∫
R

x − t

(x − t)2 + y2
f (t)dt

:=
1

2
[(Py ∗ f )(x) + i(Qy ∗ f )(x)] ,

where Py (t) =
1
π

y
t2+y2 is called Poisson kernel and Qy (t) =

1
π

t
t2+y2 is called

conjugate Poisson kernel.
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Approximation of identity

Figure: Poisson kernel

Note that Py (t) =
1
π

y
t2+y2 has the following properties.

Py (t) > 0 ∀t ∈ R and y ∈ R+.∫∞
−∞ Py (t)dt = 1.

As y → 0,
Py (t) → δ, Dirac measure at the origin in S ′.

Then for g ∈ S, we have the pointwise limit

lim
y→0

Py ∗ g(t) = g(t).

Because of this we say that {Py} is an approximation of the identity.
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conjugate Poisson kernel

Figure: Conjugate
Poisson kernel

We would like to do the same for Qy (t) = 1
π

t
t2+y2 ,

but we immediately run into an obstacle: {Qy} is not
an approximation of identity and, in fact, Qy is not
integrable for any y > 0. Formally,

lim
y→0

Qy (t) =
1

πt
.
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principal value

We define a ‘tempered distribution’ called the principal value of 1/x ,
by

p.v .
1

x
(ϕ) = lim

ϵ→0

∫
|x |>ϵ

ϕ(x)

x
dx , ϕ ∈ S.

Then one can show that, limy→0Qy (x) =
1
πp.v .

1
x in S ′.

As a consequence we get

lim
y→0

Qy ∗ f (x) =
1

π
p.v .

1

x
∗ f =

1

π
lim
ϵ→0

∫
|t|>ϵ

f (x − t)

t
dt.
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Hilbert transform

Given a function f ∈ S, we define Hilbert transform on R by

Hf (x) =
1

π
p.v .

∫
R

f (y)

x − y
dy =

1

π
p.v .

∫
R

1

y
f (x − y)dy .

Note that we can write

Hf (x) =
1

π
p.v .

∫
R

sgn(y)

|y |
f (x − y)dy .

Then we have

sgn(ry) = sgn(y) for r > 0 and y ̸= 0.
So it is enough to define it on S0 = {1,−1}.
sgn(y ′) ∈ L∞(S0).∫
S0 sgn(y

′)dσ(y ′) = 0.
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Calderón-Zygmund (CZ) type singular integral

More generally for f ∈ S(Rn), we can define Calderón-Zygmund type sin-
gular integral by

Tf (x) = p.v .

∫
Rn

Ω(y)

|y |n
f (x − y) dy ,

where Ω is assumed to satisfy the following conditions:
Ω ∈ L∞(Sn−1), (L∞-bounded)

Ω(rx ′) = Ω(x ′), (homogeneous of degree 0)∫
Sn−1 Ω(x

′) dσ(x ′) = 0, (cancellation),

(1)

for every r > 0, with Sn−1 denoting the unit sphere {x ′ ∈ Rn : |x ′| = 1}.
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Dini type condition

A function Ω is said to satisfy Dini type condition if∫ 1

0

ω∞(δ)

δ
dδ < ∞, (2)

where ω∞(δ) := sup
{∣∣Ω(x ′)− Ω(y ′)

∣∣ : ∣∣x ′ − y ′
∣∣ ≤ δ, |x ′| = |y ′| = 1

}
.

Example

If we take Ω(x) = sgn(x) then it will be Hilbert transform.

Take Ω(x) = xj/|x | with j = 1, 2, . . . , n, then it is called Riesz
transform.

It is not difficult to verify that both the function satisfies the conditions
(1) and (2).
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Boundedness of Calderón-Zygmund operator

Theorem ([LDY07])

Let T be a Calderón-Zygmund operator and Ω satisfies condition (1) and
(2) then T is ’strong’ (p, p) for 1 < p < ∞ i.e.

∥Tf ∥Lp ≤ C∥f ∥Lp .

Endpoint estimate

Calderón-Zygmund operator is not bounded in L1 or L∞, but one can
show that T : H1 → L1 and L∞ → BMO are bounded.
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Calderón-Zygmund commutator

Now consider Calderón-Zygmund commutator [b,T ] generated by a Calderón-
Zygmund type singular integral T and a measurable function b on Rn is
defined by

[b,T ]f (x) := b(x)Tf (x)− T (bf )(x)

= p.v .

∫
Rn

Ω(x − y)

|x − y |n
[b(x)− b(y)]f (y) dy ,

where f ∈ S, and Ω satisfies (1).
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BMO space

Consider the Fefferman–Stein sharp maximal function, M♯f of f given by

M♯f (x) := sup
x∈Q

1

|Q|

∫
Q
|f (y)− fQ | dy ,

where the supremum is taken over all cubes Q ⊂ Rn containing x and
fQ = 1

|Q|
∫
Q f (y)dy , which is called the average of f .

Definition

Define
BMO := {f ∈ L1loc(Rn) : M#f ∈ L∞},

with the norm of f ∈ BMO (upto a difference by constants) given by

∥f ∥BMO := ∥M#f ∥L∞ .
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Homogeneous Lipschitz space

Example

Clearly L∞ ⊂ BMO.

But there also unbounded BMO functions, i.e. log(|x |) ∈ BMO(Rn).

Definition

For 0 < γ < 1, the homogeneous Lipschitz space Lipγ(Rn) consists of
functions f on Rn satisfying

∥f ∥Lipγ := sup
x ,y∈Rn

x ̸=y

|f (x)− f (y)|
|x − y |γ

< ∞.
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Boundedness of commutator

Theorem ([LDY07])

Let [b,T ] be the Calderón-Zygmund commutator and Ω satisfies condition
(1) and (2) then

1 b ∈ BMO iff [b,T ] is strong (p, p) for 1 < p < ∞.

2 b ∈ Lipγ(Rn) iff [b,T ] is strong (p, q) for 1 < p < q < ∞ and
1/q = 1/p − γ/n.

Endpoint estimate

1 For b ∈ BMO, [b,T ] is not (H1, L1), but it is ’weak’ (H1, L1).

2 For b ∈ Lipγ , [b,T ] is of (Hp, Lq) type if n/(n + γ) < p ≤ 1 and
1/q = 1/p − γ/n.
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Extension of CZ type singular integrals and its
commutators

Let f ∈ S and Ω as early.

We consider the following extension of CZ type singular integrals
defined, for 0 < β < n, by

Tβf (x) = p.v .

∫
Rn

Ω(y)

|y |n−β
f (x − y) dy .

We also consider the following extension of the commutator of the
CZ type operator defined by,

[b,Tβ]f (x) := b(x)Tβf (x)− Tβ(bf )(x)

= p.v .

∫
Rn

Ω(x − y)

|x − y |n−β
[b(x)− b(y)]f (y) dy .
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Boundedness of Tβ and [b,Tβ]

Theorem ([LDY07])

Suppose 0 < β < n and Ω satisfies all the hypothesis as above. Let
1
q = 1

p − β
n and f ∈ Lp(Rn) for 1 < p < n

β ,then

∥Tβ(f )∥Lq ≤ Cβ∥f ∥Lp .

Theorem ([LDY07])

1 For b ∈ BMO we have ∥[b,Tβ]f ∥Lq ≤ Cβ∥f ∥Lp , for 0 < β < n and

1 < p < q < ∞ such that 1
p − 1

q = β
n .

2 For b ∈ Lipγ(Rn) we have ∥[b,Tβ]f ∥Lq ≤ Cβ∥b∥Lipγ∥f ∥Lp , for
0 < β < n, 0 < γ < 1, and 1 < p < q < ∞ such that 1

p − 1
q = γ

n + β
n .
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Problem

Formally Tβ and [b,Tβ] becomes CZ type singular integral and its
commutator respectively when β = 0.

Note that in the last theorem all the constant Cβ depends on β and
one can check that if we take β → 0 the constant become
unbounded. So we can not recover boundedness result of T from
boundedness of Tβ by taking β → 0.

So our problem is to find an uniform estimate of Tβ and [b,Tβ] with
respect to β > 0, such that strong boundedness of T and [b,T ] can
be recovered when β → 0.
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Positive result for Lp

Recently [YJL21] proved the following boundedness result.

Theorem

Let 0 < β0 <
1
2 be any fixed and small number. Then for any

f ∈ L1(Rn)∩ Lq(Rn) with 1 < q < ∞ there exists constant C independent
of β such that

∥Tβf ∥Lq ≤ C

∥f ∥Lq +
β

(q−1)n
q

q
√

(n(q − 1)− βq)
∥f ∥L1


holds uniformly for ε > 0 and 0 < β < min

{
1− β0,

(q−1)n
q

}
.
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Atoms

Now we want to extend this result for p ≤ 1. For p ≤ 1, Lp spaces are
not well behaved for boundedness of singular integral, the spaces that are
much better suited to a host of question in harmonic analysis is Hp(Hardy
spaces).

Definition

Let 0 < p ≤ 1 ≤ q ≤ ∞, p < q, and s ≥
[
n( 1p − 1)

]
. A (p, q, s)-atom

centered at x0 is a function a ∈ Lq(Rn) supported on a ball B ⊂ Rn with
centre x0 and satisfying,

1 ∥a∥Lq ≤ |B|
1
q
− 1

p ,

2

∫
Rn

a(x)xα dx = 0, for all |α| ≤ s.
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Hardy spaces

Definition

Given 0 < p ≤ 1, the Hardy space Hp consists of all tempered
distributions f admitting a decomposition f =

∑
j λjaj , where aj are

(p, q, s)-atoms and
∑

j |λj |p < ∞.

We also define ∥f ∥Hp := inf

∑
j

|λj |p
1/p

, with the infimum being

taken over all admissible representations f =
∑

j λjaj .

Example

Let f be an odd function and supp(f ) ⊂ [−1, 1] with |f (x)| ≤ 1
2 . Then

f ∈ H1.
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Dini α-type condition

In some of our results, we shall also need the following stronger Dini type
condition: for some α ∈ (0, 1],∫ 1

0

ω∞(δ)

δ1+α
dδ < ∞ (3)

where ω∞(δ) := sup
{∣∣Ω(x ′)− Ω(y ′)

∣∣ : ∣∣x ′ − y ′
∣∣ ≤ δ, |x ′| = |y ′| = 1

}
.

Example

One can show that Riesz kernel Ω(x) = xj/|x | with j = 1, 2, . . . , n,
satisfies the condition (3).
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Lipschitz space estimate

It is well known that the dual of the Hardy space Hp (0 < p ≤ 1) is Lipschitz
space Lipn( 1

p
−1) whenever

n
n+1 < p < 1 .

Theorem ([BGS22])

Let Ω satisfy conditions (1) and (3) for some 0 < α ≤ 1. If
n

n+α < p < 1 < q < ∞ are such that 1
p + 1

q = 2, then there exists a
constant C > 0 such that

∥Tβf ∥Lip
n( 1p−1)

≤ C

∥f ∥Lip
n( 1p−1)

+
β

(q−1)n
q

q
√
(n(q − 1)− βq)

∥f ∥BMO

 .

holds true for all f ∈ Lipn( 1
p
−1) ∩ BMO and 0 < β < (q−1)n

q .
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Hardy space estimate

We have the following estimates of operators Tβ on Hardy spaces Hp, with
error term taken in other Hardy spaces.

Theorem ([BGS22])

Let Ω satisfy conditions (1) and (3) for some 0 < α ≤ 1. Given
n

n+α < m < p ≤ 1, let q > 1 be such that 1
m − 1

p = 1− 1
q . Then there

exists a constant C > 0 such that

∥Tβf ∥Hp ≤ C

∥f ∥Hp +
β

(q−1)n
q

q
√
(n(q − 1)− βq)

∥f ∥Hm

 ,

holds true for every 0 < β < (q−1)n
q and for any f ∈ Hp ∩ Hm.
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Commutator with BMO

Theorem ([BGS22])

Let Ω satisfy conditions (1) and (2). If 1 < r < p < ∞ and 0 < l < n are
such that 1

p = 1
r −

l
n , then there exists a constant C > 0 such that

∥[b,Tβ]f ∥Lp ≤ C∥b∥BMO

(
∥f ∥Lp +

β
n(1− 1

p
)

p
√
n(p − 1)− βp

∥f ∥L1

+
βl

(l − β)1−
l
n

∥f ∥Lr
)

holds true for all b ∈ BMO, f ∈ Lp(Rn) ∩ L1(Rn), and 0 < β < l .
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Commutator with Lipschitz space

Theorem ([BGS22])

Let Ω satisfy conditions (1) and (2). If 1 < p < q < ∞ and 0 < γ < 1 be
such that 1

q = 1
p − γ

n , then there exists a constant C > 0 such that

∥[b,Tβ]f ∥Lq ≤ C∥b∥Lipγ

(
∥f ∥Lp +

β
n(1− 1

q
)−γ

q
√
n(q − 1)− (β − γ)q

∥f ∥L1

)

holds true for all b ∈ Lipγ(Rn), f ∈ Lp(Rn) ∩ L1(Rn), and
0 < β < n(1− 1

q )− γ.
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Commutator in Hardy space

Theorem ([BGS22])

Let Ω satisfy conditions (1) and (3) for some 0 < α < 1, and let
b ∈ Lipα(Rn). If n

n+α < p ≤ 1 < q < ∞ be such that 1
q = 1

p − α
n , then

there exists a constant C > 0 such that

∥[b,Tβ]f ∥Lq ≤ C∥b∥Lipα

(
∥f ∥Hp +

β
n(1− 1

q
)−α

q
√
n(q − 1)− (β − α)q

∥f ∥L1

)

holds true for all f ∈ Hp(Rn) ∩ L1(Rn), and 0 < β < n(1− 1
q )− α.
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Further open problem

1 Calderón’s conjucture: Consider the bilinear Hilbert transform defined
by

Hfg(x) = p.v .

∫
R
f (x − y)g(x + y)

dy

y

Is H maps Lp × Lq into Lr for 1 < p, q ≤ ∞, 1/p + 1/q = 1/r?

2 This result is known to be true for 1 < p, q ≤ ∞, 2/3 < r < ∞.

3 Similarly one can consider directional m-linear Hilbert transform
defined by

Hθ(f1, . . . , fm)(x) =

∫
R
f1(x − tθ1) . . . fm(x − tθm)

dt

t
.

Is Hθ bounded from Lp1(Rn)× . . . Lpm(Rn) into Lp(Rn) uniformly in θ
when 1 < p1, . . . , pm, p < ∞ satisfy 1/p1 + . . . 1/pm = 1/p?

4 The question has been answered so far only when m = 2 and n = 1.
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Frame Title

Thank You!
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