Biorthogonal family construction and its application to controllability

Graduate Student Seminar

Autumn 2022
(1) Null controllability
(2) Introduction to a problem
(3) Motivation for biorthogonal
(4) Biorthogonal family
(5) Controllability Results

Consider the following linear system of ODEs:

$$
\left\{\begin{array}{l}
U^{\prime}(t)=A U(t)+B Q(t) \tag{1}\\
U(0)=U^{0}
\end{array}\right.
$$

where, $A \in M_{n}(\mathbb{R}), B \in M_{n, m}(\mathbb{R}), U(t) \in \mathbb{R}^{n}, Q(t) \in \mathbb{R}^{m}$.

Consider the following linear system of ODEs:

$$
\left\{\begin{array}{l}
U^{\prime}(t)=A U(t)+B Q(t) \tag{1}\\
U(0)=U^{0}
\end{array}\right.
$$

where, $A \in M_{n}(\mathbb{R}), B \in M_{n, m}(\mathbb{R}), U(t) \in \mathbb{R}^{n}, Q(t) \in \mathbb{R}^{m}$.

Definition

(1) is null controllable in time T, if for any $U^{0} \in \mathbb{R}^{n}, \exists$ control $Q(t) \in \mathbb{R}^{m}$ such that the corresponding solution satisfies $U(T)=0$.

What to control and to where?

Consider the following linear system of ODEs:

$$
\left\{\begin{array}{l}
U^{\prime}(t)=A U(t)+B Q(t) \tag{1}\\
U(0)=U^{0}
\end{array}\right.
$$

where, $A \in M_{n}(\mathbb{R}), B \in M_{n, m}(\mathbb{R}), U(t) \in \mathbb{R}^{n}, Q(t) \in \mathbb{R}^{m}$.

Definition

(1) is null controllable in time T, if for any $U^{0} \in \mathbb{R}^{n}, \exists$ control $Q(t) \in \mathbb{R}^{m}$ such that the corresponding solution satisfies $U(T)=0$.
e.g. $A=I_{2}, B=\binom{1}{0}: n=2, m=1$

The solution of this system is given by

$$
\binom{u_{1}(t)}{u_{2}(t)}=\binom{u_{1}^{0} e^{t}+\int_{0}^{t} e^{(t-s)} Q(s) d s}{u_{2}^{0} e^{t}}
$$

What to control and to where?

Consider the following linear system of ODEs:

$$
\left\{\begin{array}{l}
U^{\prime}(t)=A U(t)+B Q(t) \tag{1}\\
U(0)=U^{0}
\end{array}\right.
$$

where, $A \in M_{n}(\mathbb{R}), B \in M_{n, m}(\mathbb{R}), U(t) \in \mathbb{R}^{n}, Q(t) \in \mathbb{R}^{m}$.

Definition

(1) is null controllable in time T, if for any $U^{0} \in \mathbb{R}^{n}, \exists$ control $Q(t) \in \mathbb{R}^{m}$ such that the corresponding solution satisfies $U(T)=0$.
e.g. $A=I_{2}, B=\binom{1}{0}: n=2, m=1$

The solution of this system is given by

$$
\begin{gathered}
\binom{u_{1}(t)}{u_{2}(t)}=\binom{u_{1}^{0} e^{t}+\int_{0}^{t} e^{(t-s)} Q(s) d s}{u_{2}^{0} e^{t}} \neq\binom{ 0}{0}: \text { Not null controllable } \\
Q(s)=-\frac{e^{-s} u_{1}^{0}}{T}, T>0
\end{gathered}
$$

What to control and to where?

Consider the following linear system of ODEs:

$$
\left\{\begin{array}{l}
U^{\prime}(t)=A U(t)+B Q(t) \tag{1}\\
U(0)=U^{0}
\end{array}\right.
$$

where, $A \in M_{n}(\mathbb{R}), B \in M_{n, m}(\mathbb{R}), U(t) \in \mathbb{R}^{n}, Q(t) \in \mathbb{R}^{m}$.

Definition

(1) is null controllable in time T, if for any $U^{0} \in \mathbb{R}^{n}, \exists$ control $Q(t) \in \mathbb{R}^{m}$ such that the corresponding solution satisfies $U(T)=0$.
e.g. $A=I_{2}, B=\binom{1}{0}: n=2, m=1$

The solution of this system is given by

$$
\begin{gathered}
\binom{u_{1}(t)}{u_{2}(t)}=\binom{u_{1}^{0} e^{t}+\int_{0}^{t} e^{(t-s)} Q(s) d s}{u_{2}^{0} e^{t}} \neq\binom{ 0}{0}: \text { Not null controllable } \\
Q(s)=-\frac{e^{-s} u_{1}^{0}}{T}, T>0
\end{gathered}
$$

What if $B=I_{2}$ and $Q=\binom{q_{1}}{q_{2}} ?:[\mathrm{m}=\mathrm{n}=2]$
e.g. $A=\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right), B=\binom{0}{1}$
e.g. $A=\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right), B=\binom{0}{1}: m=1<2=\mathrm{n}$: Null controllable

The system can be written as:

$$
\left\{\begin{array}{l}
u_{1}^{\prime}(t)=u_{2}(t) \tag{2}\\
u_{2}^{\prime}(t)=-u_{1}(t)+q(t)
\end{array}\right.
$$

e.g. $A=\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right), B=\binom{0}{1}: m=1<2=\mathrm{n}$: Null controllable

The system can be written as:

$$
\left\{\begin{array}{l}
u_{1}^{\prime}(t)=u_{2}(t) \tag{2}\\
u_{2}^{\prime}(t)=-u_{1}(t)+q(t)
\end{array}\right.
$$

which is equivalent to $u_{1}^{\prime \prime}+u_{1}=q$.
e.g. $A=\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right), B=\binom{0}{1}: m=1<2=\mathrm{n}$: Null controllable

The system can be written as:

$$
\left\{\begin{array}{l}
u_{1}^{\prime}(t)=u_{2}(t) \tag{2}\\
u_{2}^{\prime}(t)=-u_{1}(t)+q(t)
\end{array}\right.
$$

which is equivalent to $u_{1}^{\prime \prime}+u_{1}=q$.
The states are: $\left(u_{1}, u_{2}\right)=\left(u_{1}, u_{1}^{\prime}\right)$.
e.g. $A=\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right), B=\binom{0}{1}: m=1<2=\mathrm{n}$: Null controllable

The system can be written as:

$$
\left\{\begin{array}{l}
u_{1}^{\prime}(t)=u_{2}(t) \tag{2}\\
u_{2}^{\prime}(t)=-u_{1}(t)+q(t)
\end{array}\right.
$$

which is equivalent to $u_{1}^{\prime \prime}+u_{1}=q$.
The states are: $\left(u_{1}, u_{2}\right)=\left(u_{1}, u_{1}^{\prime}\right)$.
For any given initial data $\left(u_{1}^{0}, u_{2}^{0}\right)$, define $u(t)$
e.g. $A=\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right), B=\binom{0}{1}: m=1<2=\mathrm{n}$: Null controllable

The system can be written as:

$$
\left\{\begin{array}{l}
u_{1}^{\prime}(t)=u_{2}(t) \tag{2}\\
u_{2}^{\prime}(t)=-u_{1}(t)+q(t)
\end{array}\right.
$$

which is equivalent to $u_{1}^{\prime \prime}+u_{1}=q$.
The states are: $\left(u_{1}, u_{2}\right)=\left(u_{1}, u_{1}^{\prime}\right)$.
For any given initial data (u_{1}^{0}, u_{2}^{0}), define $u(t)$ as:

$$
u(t)=\frac{(T-t)^{2}\left(u_{1}^{0}+t\left(u_{2}^{0}+\frac{2}{T} u_{1}^{0}\right)\right)}{T^{2}}
$$

Then: $u(0)=u_{1}^{0}, u(T)=0$,

$$
u^{\prime}(0)=u_{2}^{0}, u^{\prime}(T)=0
$$

e.g. $A=\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right), B=\binom{0}{1}: m=1<2=\mathrm{n}$: Null controllable

The system can be written as:

$$
\left\{\begin{array}{l}
u_{1}^{\prime}(t)=u_{2}(t) \tag{2}\\
u_{2}^{\prime}(t)=-u_{1}(t)+q(t)
\end{array}\right.
$$

which is equivalent to $u_{1}^{\prime \prime}+u_{1}=q$.
The states are: $\left(u_{1}, u_{2}\right)=\left(u_{1}, u_{1}^{\prime}\right)$.
For any given initial data (u_{1}^{0}, u_{2}^{0}), define $u(t)$ as:

$$
u(t)=\frac{(T-t)^{2}\left(u_{1}^{0}+t\left(u_{2}^{0}+\frac{2}{T} u_{1}^{0}\right)\right)}{T^{2}}
$$

Then: $u(0)=u_{1}^{0}, u(T)=0$,

$$
u^{\prime}(0)=u_{2}^{0}, u^{\prime}(T)=0
$$

Finally, one can define the control as $q(t)=u^{\prime \prime}(t)+u(t)$.

Introducing the systems

The linear system coupling KS-KdV equation with transport equation is given as:

$$
\begin{cases}u_{t}+u_{x x x x}+u_{x x x}+u_{x x}+u=v_{x}, & (t, x) \in(0, T) \times(0,2 \pi), \tag{3}\\ v_{t}+v_{x}+v=u_{x}, & (t, x) \in(0, T) \times(0,2 \pi), \\ u(t, 0)=u(t, 2 \pi), & t \in(0, T), \\ u^{(i)}(t, 0)=u^{(i)}(t, 2 \pi), & t \in(0, T), i \in\{1,2,3\}, \\ v(t, 0)=v(t, 2 \pi)+q(t), & t \in(0, T), \\ u(0, x)=u_{0}(x), v(0, x)=v_{0}(x), & x \in(0,2 \pi),\end{cases}
$$

Introducing the systems

The linear system coupling KS-KdV equation with transport equation is given as:

$$
\begin{cases}u_{t}+u_{x x x x}+u_{x x x}+u_{x x}+u=v_{x}, & (t, x) \in(0, T) \times(0,2 \pi), \tag{3}\\ v_{t}+v_{x}+v=u_{x}, & (t, x) \in(0, T) \times(0,2 \pi), \\ u(t, 0)=u(t, 2 \pi), & t \in(0, T), \\ u^{(i)}(t, 0)=u^{(i)}(t, 2 \pi), & t \in(0, T), i \in\{1,2,3\}, \\ v(t, 0)=v(t, 2 \pi)+q(t), & t \in(0, T), \\ u(0, x)=u_{0}(x), v(0, x)=v_{0}(x), & x \in(0,2 \pi),\end{cases}
$$

The coupled PDEs can be written as:

$$
\begin{equation*}
\binom{u}{v}_{t}=A\binom{u}{v}=\binom{v_{x}-u_{x x x x}-u_{x x x}-u_{x x}-u}{u_{x}-v_{x}-v} . \tag{4}
\end{equation*}
$$

Introducing the systems

The linear system coupling KS-KdV equation with transport equation is given as:

$$
\begin{cases}u_{t}+u_{x x x x}+u_{x x x}+u_{x x}+u=v_{x}, & (t, x) \in(0, T) \times(0,2 \pi), \tag{3}\\ v_{t}+v_{x}+v=u_{x}, & (t, x) \in(0, T) \times(0,2 \pi), \\ u(t, 0)=u(t, 2 \pi), & t \in(0, T), \\ u^{(i)}(t, 0)=u^{(i)}(t, 2 \pi), & t \in(0, T), i \in\{1,2,3\}, \\ v(t, 0)=v(t, 2 \pi)+q(t), & t \in(0, T), \\ u(0, x)=u_{0}(x), v(0, x)=v_{0}(x), & x \in(0,2 \pi),\end{cases}
$$

The coupled PDEs can be written as:

$$
\begin{equation*}
\binom{u}{v}_{t}=A\binom{u}{v}=\binom{v_{x}-u_{x x x x}-u_{x x x}-u_{x x}-u}{u_{x}-v_{x}-v} . \tag{4}
\end{equation*}
$$

Question:

We try to find a space X and some $T_{0} \geq 0$ such that if we choose $\left(u_{0}, v_{0}\right) \in X$, and any $T>T_{0}$, we get existence of a control function $q_{T} \in L^{2}(0, T)$ such that the solution (u, v) satisfies $(u(T, x), v(T, x))=(0,0)$.

Motivation for biorthogonal

$$
L^{2}(0,2 \pi)=\left\{f:(0,2 \pi) \rightarrow \mathbb{C}: \int_{0}^{2 \pi}|f|^{2}<\infty\right\}
$$

Motivation for biorthogonal

$L^{2}(0,2 \pi)=\left\{f:(0,2 \pi) \rightarrow \mathbb{C}: \int_{0}^{2 \pi}|f|^{2}<\infty\right\}$.

* Method utilized: Method of moments

Motivation for biorthogonal

$L^{2}(0,2 \pi)=\left\{f:(0,2 \pi) \rightarrow \mathbb{C}: \int_{0}^{2 \pi}|f|^{2}<\infty\right\}$.

* Method utilized: Method of moments
* Asymptotic expression of eigenvalues:

$$
\left\{\begin{array}{l}
\lambda_{0}^{ \pm}=-1 \\
\lambda_{1}^{+}=\lambda_{-1}^{+}=-1+\sqrt{2} i \\
\lambda_{1}^{-}=\lambda_{-1}^{-}=-1-\sqrt{2} i \\
\lambda_{k}^{+}=i k-1+O\left(k^{-1}\right), \text { as }|k| \rightarrow \infty \\
\lambda_{k}^{-}=-k^{4}-i k^{3}+k^{2}-1+O\left(k^{-1}\right), \text { as }|k| \rightarrow \infty
\end{array}\right.
$$

Motivation for biorthogonal

$L^{2}(0,2 \pi)=\left\{f:(0,2 \pi) \rightarrow \mathbb{C}: \int_{0}^{2 \pi}|f|^{2}<\infty\right\}$.

* Method utilized: Method of moments
* Asymptotic expression of eigenvalues:

$$
\left\{\begin{array}{l}
\lambda_{0}^{ \pm}=-1 \\
\lambda_{1}^{+}=\lambda_{-1}^{+}=-1+\sqrt{2} i \\
\lambda_{1}^{-}=\lambda_{-1}^{-}=-1-\sqrt{2} i \\
\lambda_{k}^{+}=i k-1+O\left(k^{-1}\right), \text { as }|k| \rightarrow \infty \\
\lambda_{k}^{-}=-k^{4}-i k^{3}+k^{2}-1+O\left(k^{-1}\right), \text { as }|k| \rightarrow \infty
\end{array}\right.
$$

* This method relies on: (Null controllability) \Leftrightarrow (Solving a moment problem)

$$
\left\{\begin{array}{l}
a_{k}^{+} \int_{-\frac{T}{2}}^{\frac{T}{2}} e^{-\overline{\lambda_{k}^{+}} t} q\left(t+\frac{T}{2}\right) d t=b_{k}^{+}, \\
a_{k}^{-} \int_{-\frac{T}{2}}^{\frac{T}{2}} e^{-\overline{\lambda_{k}^{-}} t} q\left(t+\frac{T}{2}\right) d t=b_{k}^{-},
\end{array} \quad k \in \mathbb{Z} \backslash\{0, \pm 1\}:\right. \text { Moment problem }
$$

Motivation for biorthogonal

$L^{2}(0,2 \pi)=\left\{f:(0,2 \pi) \rightarrow \mathbb{C}: \int_{0}^{2 \pi}|f|^{2}<\infty\right\}$.

* Method utilized: Method of moments
* Asymptotic expression of eigenvalues:

$$
\left\{\begin{array}{l}
\lambda_{0}^{ \pm}=-1 \\
\lambda_{1}^{+}=\lambda_{-1}^{+}=-1+\sqrt{2} i \\
\lambda_{1}^{-}=\lambda_{-1}^{-}=-1-\sqrt{2} i \\
\lambda_{k}^{+}=i k-1+O\left(k^{-1}\right), \text { as }|k| \rightarrow \infty \\
\lambda_{k}^{-}=-k^{4}-i k^{3}+k^{2}-1+O\left(k^{-1}\right), \text { as }|k| \rightarrow \infty
\end{array}\right.
$$

* This method relies on: (Null controllability) \Leftrightarrow (Solving a moment problem)

$$
\left\{\begin{array}{l}
a_{k}^{+} \int_{-\frac{T}{2}}^{\frac{T}{2}} e^{-\overline{\lambda_{k}^{+}} t} q\left(t+\frac{T}{2}\right) d t=b_{k}^{+}, \\
a_{k}^{-} \int_{-\frac{T}{2}}^{\frac{T}{2}} e^{-\overline{\lambda_{k}^{-}} t} q\left(t+\frac{T}{2}\right) d t=b_{k}^{-},
\end{array} \quad k \in \mathbb{Z} \backslash\{0, \pm 1\}:\right. \text { Moment problem }
$$

* Need a family of functions biorthogonal to $\left\{e^{\lambda_{k}^{ \pm} t}\right\}$ with proper L^{2}-estimates.

Biorthogonal family

Theorem (Existence of biorthogonal)

Let $T>2 \pi$. Then there exists a family $\left\{\Theta_{k}^{ \pm}\right\}_{k \in \mathbb{Z} \backslash\{-1,0\}} \cup\left\{\Theta_{0}\right\}$ of functions in $L^{2}\left(-\frac{T}{2}, \frac{T}{2}\right)$ satisfying

$$
\left\{\begin{array}{l}
\int_{-\frac{T}{2}}^{\frac{T}{2}} \Theta_{k}^{ \pm}(t) e^{-\overline{\lambda_{l}^{ \pm}} t} d t=\delta_{k l} \delta_{ \pm}, \quad l \in \mathbb{Z} \backslash\{-1\}, k \in \mathbb{Z} \backslash\{-1,0\}, \\
\int_{-\frac{T}{2}}^{\frac{T}{2}} \Theta_{0}(t) e^{-\overline{\lambda_{l}^{ \pm} t}} d t=\delta_{0 \prime}, \quad \mid \in \mathbb{Z} \backslash\{-1\},
\end{array}\right.
$$

where,

$$
\delta_{k l}=\left\{\begin{array}{ll}
1, & \text { if } k=1 \\
0, & \text { if } k \neq 1
\end{array} \text { and } \delta_{ \pm}= \begin{cases}1, & \text { if sign on } \Theta_{k} \text { and } \lambda_{k} \text { is same } \\
0, & \text { otherwise } .\end{cases}\right.
$$

Biorthogonal family

Theorem (Existence of biorthogonal)

Let $T>2 \pi$. Then there exists a family $\left\{\Theta_{k}^{ \pm}\right\}_{k \in \mathbb{Z} \backslash\{-1,0\}} \cup\left\{\Theta_{0}\right\}$ of functions in $L^{2}\left(-\frac{T}{2}, \frac{T}{2}\right)$ satisfying

$$
\left\{\begin{array}{l}
\int_{-\frac{T}{2}}^{\frac{T}{2}} \Theta_{k}^{ \pm}(t) e^{-\overline{\lambda_{l}^{ \pm}} t} d t=\delta_{k l} \delta_{ \pm}, \quad l \in \mathbb{Z} \backslash\{-1\}, k \in \mathbb{Z} \backslash\{-1,0\}, \\
\int_{-\frac{T}{2}}^{\frac{T}{2}} \Theta_{0}(t) e^{-\overline{\lambda_{l}^{ \pm}} t} d t=\delta_{0 \prime}, \quad \mid \in \mathbb{Z} \backslash\{-1\},
\end{array}\right.
$$

where,

$$
\delta_{k l}=\left\{\begin{array}{ll}
1, & \text { if } k=1 \\
0, & \text { if } k \neq 1
\end{array} \text { and } \delta_{ \pm}= \begin{cases}1, & \text { if sign on } \Theta_{k} \text { and } \lambda_{k} \text { is same } \\
0, & \text { otherwise } .\end{cases}\right.
$$

Moreover, we have following estimates on the obtained family

$$
\begin{aligned}
\left\|\Theta_{k}^{+}\right\|_{L^{2}(\mathbb{R})} \leq C|k|^{4}, & k \in \mathbb{Z} \backslash\{-1,0\}, \\
\left\|\Theta_{k}^{-}\right\|_{L^{2}(\mathbb{R})} \leq C e^{-\frac{T}{2}\left(k^{4}-k^{2}\right)}, & k \in \mathbb{Z} \backslash\{-1,0\}, \\
\left\|\Theta_{0}\right\|_{L^{2}(\mathbb{R})} \leq C, &
\end{aligned}
$$

where, C is a positive constant independent of k.

Preliminaries

Definition

An entire function f is said to be of exponential type A if there exist positive constant B such that

$$
|f(z)| \leq B e^{A|z|}, z \in \mathbb{C}
$$

Preliminaries

Definition

An entire function f is said to be of exponential type A if there exist positive constant B such that

$$
|f(z)| \leq B e^{A|z|}, z \in \mathbb{C}
$$

Definition

An entire function f is said to be of exponential type at most A if for any $\epsilon>0$, there exist $B_{\epsilon}>0$ such that

$$
|f(z)| \leq B_{\epsilon} e^{(A+\epsilon)|z|}, z \in \mathbb{C}
$$

Contd.

Definition

An entire function f of exponential type π is said to be of sine type if
(i) the zeros of $f(z)$, say μ_{k} satisfies gap condition, i.e., there exist $\delta>0$ such that $\left|\mu_{k}-\mu_{l}\right|>\delta$ for $k \neq l$, and
(ii) there exist positive constants C_{1}, C_{2} and C_{3} such that

$$
C_{1} e^{\pi|y|} \leq|f(x+i y)| \leq C_{2} e^{\pi|y|}, \forall x, y \in \mathbb{R} \text { with }|y| \geq C_{3} .
$$

Contd.

Definition

An entire function f of exponential type π is said to be of sine type if
(i) the zeros of $f(z)$, say μ_{k} satisfies gap condition, i.e., there exist $\delta>0$ such that $\left|\mu_{k}-\mu_{l}\right|>\delta$ for $k \neq I$, and
(ii) there exist positive constants C_{1}, C_{2} and C_{3} such that

$$
C_{1} e^{\pi|y|} \leq|f(x+i y)| \leq C_{2} e^{\pi|y|}, \forall x, y \in \mathbb{R} \text { with }|y| \geq C_{3} .
$$

Theorem (Properties of sine type function)

Let f be a sine type function, and let $\left\{\mu_{k}\right\}_{k \in \mathcal{I}}$ with $\mathcal{I} \subset \mathbb{Z}$ be its sequence of zeros. Then, we have:
(a) for any $\epsilon>0$, there exist constants $K_{\epsilon}, \tilde{K}_{\epsilon}>0$ such that

$$
K_{\epsilon} e^{\pi|y|} \leq|f(x+i y)| \leq \tilde{K}_{\epsilon} e^{\pi|y|}, \text { if } \operatorname{dist}\left(x+i y,\left\{\mu_{k}\right\}\right)>\epsilon,
$$

(b) there exist some constants $K_{1}, K_{2}>0$ such that

$$
K_{1}<\left|f^{\prime}\left(\mu_{k}\right)\right|<K_{2}, \quad \forall k \in \mathcal{I} .
$$

Contd.

Theorem (Paley-Wiener)

Let f be an entire function of exponential type A and suppose

$$
\int_{-\infty}^{\infty}|f(x)|^{2} d x<\infty
$$

Then there exists a function $\phi \in L^{2}(-A, A)$ with the following

$$
f(z)=\int_{-A}^{A} e^{i z t} \phi(t) d t, z \in \mathbb{C}
$$

Sketch of the proof

Thus, the problem reduces to find a class of entire functions $\mathcal{E}=\left\{\Psi_{k}^{ \pm}, \Psi_{0}\right\}_{k \in \mathbb{Z} \backslash\{-1,0\}}$ with the following properties:

Sketch of the proof

Thus, the problem reduces to find a class of entire functions $\mathcal{E}=\left\{\Psi_{k}^{ \pm}, \Psi_{0}\right\}_{k \in \mathbb{Z} \backslash\{-1,0\}}$ with the following properties:

1. \exists a positive constant C_{k} such that

$$
\begin{equation*}
\left|\Psi_{0}(z)\right| \leq C_{0} e^{\frac{T}{2}|z|} \text { and }\left|\Psi_{k}^{ \pm}(z)\right| \leq C_{k} e^{\frac{T}{2}|z|}, \quad \forall z \in \mathbb{C} \tag{5}
\end{equation*}
$$

Sketch of the proof

Thus, the problem reduces to find a class of entire functions $\mathcal{E}=\left\{\Psi_{k}^{ \pm}, \Psi_{0}\right\}_{k \in \mathbb{Z} \backslash\{-1,0\}}$ with the following properties:

1. \exists a positive constant C_{k} such that

$$
\begin{equation*}
\left|\Psi_{0}(z)\right| \leq C_{0} e^{\frac{T}{2}|z|} \text { and }\left|\Psi_{k}^{ \pm}(z)\right| \leq C_{k} e^{\frac{T}{2}|z|}, \quad \forall z \in \mathbb{C} \tag{5}
\end{equation*}
$$

2.

$$
\begin{equation*}
\int_{\mathbb{R}}\left|\Psi_{k}^{ \pm}(x)\right|^{2} d x<\infty \text { and } \int_{\mathbb{R}}\left|\Psi_{0}(x)\right|^{2} d x<\infty \tag{6}
\end{equation*}
$$

Sketch of the proof

Thus, the problem reduces to find a class of entire functions $\mathcal{E}=\left\{\Psi_{k}^{ \pm}, \Psi_{0}\right\}_{k \in \mathbb{Z} \backslash\{-1,0\}}$ with the following properties:

1. \exists a positive constant C_{k} such that

$$
\begin{equation*}
\left|\Psi_{0}(z)\right| \leq C_{0} e^{\frac{T}{2}|z|} \text { and }\left|\Psi_{k}^{ \pm}(z)\right| \leq C_{k} e^{\frac{T}{2}|z|}, \quad \forall z \in \mathbb{C} \tag{5}
\end{equation*}
$$

2.

$$
\begin{equation*}
\int_{\mathbb{R}}\left|\Psi_{k}^{ \pm}(x)\right|^{2} d x<\infty \text { and } \int_{\mathbb{R}}\left|\Psi_{0}(x)\right|^{2} d x<\infty \tag{6}
\end{equation*}
$$

3. The following relation hold

$$
\begin{cases}\Psi_{k}^{ \pm}\left(i \mu_{l}^{ \pm}\right)=\delta_{k l} \delta_{ \pm}, & k \in \mathbb{Z} \backslash\{-1,0\}, l \in \mathbb{Z} \backslash\{-1\} \tag{7}\\ \Psi_{0}\left(i \mu_{l}^{ \pm}\right)=\delta_{0 \prime}, & l \in \mathbb{Z} \backslash\{-1\}\end{cases}
$$

where, $\mu_{0}^{+}=\mu_{0}^{-}=\mu_{0}=-1, \mu_{k}^{ \pm}=\overline{\lambda_{k}^{ \pm}}, \forall k \in \mathbb{Z} \backslash\{0\} .0$

Let us first introduce the following entire function which has simple zeros exactly at $i \mu_{k}^{ \pm}=i \lambda_{k}^{ \pm}$:

$$
\begin{equation*}
P(z)=\left(1-\frac{z}{i \mu_{0}}\right) \prod_{k \in \mathbb{Z} \backslash\{-1,0\}}\left(1-\frac{z}{i \mu_{k}^{+}}\right) \prod_{k \in \mathbb{Z} \backslash\{-1,0\}}\left(1-\frac{z}{i \mu_{k}^{-}}\right) . \tag{8}
\end{equation*}
$$

Contd.

Let us first introduce the following entire function which has simple zeros exactly at $i \mu_{k}^{ \pm}=i \overline{\lambda_{k}^{ \pm}}$:

$$
\begin{equation*}
P(z)=\left(1-\frac{z}{i \mu_{0}}\right) \prod_{k \in \mathbb{Z} \backslash\{-1,0\}}\left(1-\frac{z}{i \mu_{k}^{+}}\right) \prod_{k \in \mathbb{Z} \backslash\{-1,0\}}\left(1-\frac{z}{i \mu_{k}^{-}}\right) . \tag{8}
\end{equation*}
$$

Lemma

Let $\Lambda_{k}=k+d_{k}$, where $d_{k}=d+O\left(k^{-1}\right)$, for $k \in \mathbb{Z} \backslash\{0\}$ as $|k| \rightarrow \infty$ for some constant $d \in \mathbb{C}$, and that $\Lambda_{k} \neq \Lambda_{\text {, }}$ for $k \neq 1$. Then $f(z)=\prod_{k \in \mathbb{Z}}\left(1-\frac{z}{\Lambda_{k}}\right)$ is an entire function of type sine.

Contd.

Let us first introduce the following entire function which has simple zeros exactly at $i \mu_{k}^{ \pm}=i \overline{\lambda_{k}^{ \pm}}$:

$$
\begin{equation*}
P(z)=\left(1-\frac{z}{i \mu_{0}}\right) \prod_{k \in \mathbb{Z} \backslash\{-1,0\}}\left(1-\frac{z}{i \mu_{k}^{+}}\right) \prod_{k \in \mathbb{Z} \backslash\{-1,0\}}\left(1-\frac{z}{i \mu_{k}^{-}}\right) . \tag{8}
\end{equation*}
$$

Lemma

Let $\Lambda_{k}=k+d_{k}$, where $d_{k}=d+O\left(k^{-1}\right)$, for $k \in \mathbb{Z} \backslash\{0\}$ as $|k| \rightarrow \infty$ for some constant $d \in \mathbb{C}$, and that $\Lambda_{k} \neq \Lambda_{\text {, }}$ for $k \neq 1$. Then $f(z)=\prod_{k \in \mathbb{Z}}\left(1-\frac{z}{\Lambda_{k}}\right)$ is an entire function of type sine.

Define

$$
P_{1}(z)=\prod_{k \in \mathbb{Z} \backslash\{-1\}}\left(1-\frac{z}{i \mu_{k}^{+}}\right), \quad P_{2}(z)=\prod_{k \in \mathbb{Z} \backslash\{-1\}}\left(1-\frac{z}{i \mu_{k}^{-}}\right)
$$

Contd.

Let us first introduce the following entire function which has simple zeros exactly at $i \mu_{k}^{ \pm}=i \overline{\lambda_{k}^{ \pm}}$:

$$
\begin{equation*}
P(z)=\left(1-\frac{z}{i \mu_{0}}\right) \prod_{k \in \mathbb{Z} \backslash\{-1,0\}}\left(1-\frac{z}{i \mu_{k}^{+}}\right) \prod_{k \in \mathbb{Z} \backslash\{-1,0\}}\left(1-\frac{z}{i \mu_{k}^{-}}\right) . \tag{8}
\end{equation*}
$$

Lemma

Let $\Lambda_{k}=k+d_{k}$, where $d_{k}=d+O\left(k^{-1}\right)$, for $k \in \mathbb{Z} \backslash\{0\}$ as $|k| \rightarrow \infty$ for some constant $d \in \mathbb{C}$, and that $\Lambda_{k} \neq \Lambda_{\text {, }}$ for $k \neq 1$. Then $f(z)=\prod_{k \in \mathbb{Z}}\left(1-\frac{z}{\Lambda_{k}}\right)$ is an entire function of type sine.

Define

$$
\begin{gathered}
P_{1}(z)=\prod_{k \in \mathbb{Z} \backslash\{-1\}}\left(1-\frac{z}{i \mu_{k}^{+}}\right), \quad P_{2}(z)=\prod_{k \in \mathbb{Z} \backslash\{-1\}}\left(1-\frac{z}{i \mu_{k}^{-}}\right) \\
P(z)=\frac{P_{1}(z) P_{2}(z)}{\left(1+\frac{z}{i}\right)}
\end{gathered}
$$

Contd.

For $k \in \mathbb{Z} \backslash\{-1,0\}$, we define

$$
\tilde{\delta}_{k}=\operatorname{sgn}(k) \sqrt[4]{-\mu_{k}^{-}}=k+b_{k}
$$

where $b_{k}=-\frac{i}{4}+O\left(k^{-1}\right)$ as $|k| \rightarrow \infty$ and let $\tilde{\delta}_{0}=1$.

Contd.

For $k \in \mathbb{Z} \backslash\{-1,0\}$, we define

$$
\tilde{\delta}_{k}=\operatorname{sgn}(k) \sqrt[4]{-\mu_{k}^{-}}=k+b_{k}
$$

where $b_{k}=-\frac{i}{4}+O\left(k^{-1}\right)$ as $|k| \rightarrow \infty$ and let $\tilde{\delta}_{0}=1$. Next, we define

$$
Q_{1}(z)=\prod_{k \in \mathbb{Z} \backslash\{-1\}}\left(1-\frac{z}{\tilde{\delta}_{k}}\right)
$$

Contd.

For $k \in \mathbb{Z} \backslash\{-1,0\}$, we define

$$
\tilde{\delta}_{k}=\operatorname{sgn}(k) \sqrt[4]{-\mu_{k}^{-}}=k+b_{k}
$$

where $b_{k}=-\frac{i}{4}+O\left(k^{-1}\right)$ as $|k| \rightarrow \infty$ and let $\tilde{\delta}_{0}=1$. Next, we define

$$
\begin{aligned}
& Q_{1}(z)=\prod_{k \in \mathbb{Z} \backslash\{-1\}}\left(1-\frac{z}{\tilde{\delta}_{k}}\right), \\
& Q_{2}(z)=\prod_{k \in \mathbb{Z} \backslash\{-1\}}\left(1+\frac{z^{4}}{\mu_{k}^{-}}\right) .
\end{aligned}
$$

Thus, we get the following relations:

$$
\begin{align*}
& Q_{2}(z)=Q_{1}(z) Q_{1}(-z) Q_{1}(i z) Q_{1}(-i z), \tag{9}\\
& P_{2}(z)=Q_{2}\left(e^{i \frac{\pi}{8}} \sqrt[4]{z}\right) \tag{10}
\end{align*}
$$

Contd.

Lemma (Estimates on P)

Let P be the canonical product defined in (8). Then P is an entire function of exponential type at most π, which satisfies the following estimates for some positive constants C, C_{1}, C_{2} independent of k :

$$
\begin{align*}
|P(x)| & \leq C|x+i|^{-1} e^{2 \pi\left(\cos \left(\frac{\pi}{8}\right)+\sin \left(\frac{\pi}{8}\right)\right)|x|^{\frac{1}{4}}}, \quad \forall x \in \mathbb{R}, \tag{11}\\
\left|P^{\prime}\left(i \mu_{k}^{+}\right)\right| & \geq C_{1}|k|^{-1} e^{2 \pi\left(\cos \left(\frac{\pi}{8}\right)+\sin \left(\frac{\pi}{8}\right)\right)|k|^{\frac{1}{4}}}, \quad k \in \mathbb{Z} \backslash\{-1,0\} \tag{12}\\
\left|P^{\prime}\left(i \mu_{k}^{-}\right)\right| & \geq C_{2}|k|^{-7} e^{\pi\left(k^{4}-k^{2}+2|k|\right)}, \quad k \in \mathbb{Z} \backslash\{-1,0\} . \tag{13}
\end{align*}
$$

Contd.

Lemma (Estimates on P)

Let P be the canonical product defined in (8). Then P is an entire function of exponential type at most π, which satisfies the following estimates for some positive constants C, C_{1}, C_{2} independent of k :

$$
\begin{align*}
|P(x)| & \leq C|x+i|^{-1} e^{2 \pi\left(\cos \left(\frac{\pi}{8}\right)+\sin \left(\frac{\pi}{8}\right)\right)|x|^{\frac{1}{4}}}, \quad \forall x \in \mathbb{R}, \tag{11}\\
\left|P^{\prime}\left(i \mu_{k}^{+}\right)\right| & \geq C_{1}|k|^{-1} e^{2 \pi\left(\cos \left(\frac{\pi}{8}\right)+\sin \left(\frac{\pi}{8}\right)\right)|k|^{\frac{1}{4}}}, \quad k \in \mathbb{Z} \backslash\{-1,0\} \tag{12}\\
\left|P^{\prime}\left(i \mu_{k}^{-}\right)\right| & \geq C_{2}|k|^{-7} e^{\pi\left(k^{4}-k^{2}+2|k|\right)}, \quad k \in \mathbb{Z} \backslash\{-1,0\} . \tag{13}
\end{align*}
$$

Lemma (Estimate for the multiplier M)

There exist an entire function, M of exponential type at most a π, where $a=\left(\frac{T}{2 \pi}-1\right)>0$ which satisfies the following bound for some $C, \widetilde{C}, \widehat{C}>0$:

$$
\begin{align*}
|M(x)| & \leq C|x| \exp \left[-2 \pi\left(\cos \left(\frac{\pi}{8}\right)+\sin \left(\frac{\pi}{8}\right)\right)|x|^{\frac{1}{4}}\right], \quad \forall x \in \mathbb{R} \tag{14}\\
\left|M\left(i \mu_{k}^{+}\right)\right| & \geq \widetilde{C}|k|^{-3} \exp \left[-2 \pi\left(\cos \left(\frac{\pi}{8}\right)+\sin \left(\frac{\pi}{8}\right)\right)|k|^{\frac{1}{4}}\right], \quad \forall k \in \mathbb{Z} \backslash\{-1,0\}, \tag{15}\\
\left|M\left(i \mu_{k}^{-}\right)\right| & \geq \widehat{C}|k|^{-8} \exp \left[\pi a\left(k^{4}-k^{2}\right)-c|k|\right], \quad \forall k \in \mathbb{Z} \backslash\{-1,0\} \tag{16}
\end{align*}
$$

Contd.

Now, we can finally define $\Psi_{k}^{ \pm}$as

$$
\Psi_{k}^{ \pm}(z)=\frac{P(z)}{P^{\prime}\left(i \mu_{k}^{ \pm}\right)\left(z-i \mu_{k}^{ \pm}\right)} \frac{M(z)}{M\left(i \mu_{k}^{ \pm}\right)}, k \in \mathbb{Z} \backslash\{-1,0\}
$$

and

$$
\Psi_{0}(z)=\frac{P(z)}{P^{\prime}(-i)(z+i)} \frac{M(z)}{M(-i)}
$$

Clearly, Ψ_{k} is an entire function of exponential type at most $\pi+a \pi=\frac{T}{2}$ and satisfies

$$
\begin{aligned}
& \Psi_{k}^{ \pm}\left(i \mu_{l}^{ \pm}\right)=\delta_{k l} \delta_{ \pm}, \quad \forall I \in \mathbb{Z} \backslash\{-1\} \text { and } k \in \mathbb{Z} \backslash\{-1,0\}, \\
& \Psi_{0}\left(i \mu_{l}^{ \pm}\right)=\delta_{0 I}, \quad \forall I \in \mathbb{Z} \backslash\{-1\} .
\end{aligned}
$$

Contd.

Now, we can finally define $\Psi_{k}^{ \pm}$as

$$
\Psi_{k}^{ \pm}(z)=\frac{P(z)}{P^{\prime}\left(i \mu_{k}^{ \pm}\right)\left(z-i \mu_{k}^{ \pm}\right)} \frac{M(z)}{M\left(i \mu_{k}^{ \pm}\right)}, k \in \mathbb{Z} \backslash\{-1,0\}
$$

and

$$
\Psi_{0}(z)=\frac{P(z)}{P^{\prime}(-i)(z+i)} \frac{M(z)}{M(-i)}
$$

Clearly, Ψ_{k} is an entire function of exponential type at most $\pi+a \pi=\frac{T}{2}$ and satisfies

$$
\begin{aligned}
& \Psi_{k}^{ \pm}\left(i \mu_{l}^{ \pm}\right)=\delta_{k l} \delta_{ \pm}, \quad \forall I \in \mathbb{Z} \backslash\{-1\} \text { and } k \in \mathbb{Z} \backslash\{-1,0\}, \\
& \Psi_{0}\left(i \mu_{l}^{ \pm}\right)=\delta_{0 I}, \quad \forall I \in \mathbb{Z} \backslash\{-1\} .
\end{aligned}
$$

It can be seen that

$$
|P(x) M(x)| \leq C
$$

Contd.

Now, we can finally define $\Psi_{k}^{ \pm}$as

$$
\Psi_{k}^{ \pm}(z)=\frac{P(z)}{P^{\prime}\left(i \mu_{k}^{ \pm}\right)\left(z-i \mu_{k}^{ \pm}\right)} \frac{M(z)}{M\left(i \mu_{k}^{ \pm}\right)}, k \in \mathbb{Z} \backslash\{-1,0\}
$$

and

$$
\Psi_{0}(z)=\frac{P(z)}{P^{\prime}(-i)(z+i)} \frac{M(z)}{M(-i)}
$$

Clearly, Ψ_{k} is an entire function of exponential type at most $\pi+a \pi=\frac{T}{2}$ and satisfies

$$
\begin{aligned}
& \Psi_{k}^{ \pm}\left(i \mu_{l}^{ \pm}\right)=\delta_{k l} \delta_{ \pm}, \quad \forall I \in \mathbb{Z} \backslash\{-1\} \text { and } k \in \mathbb{Z} \backslash\{-1,0\}, \\
& \Psi_{0}\left(i \mu_{l}^{ \pm}\right)=\delta_{0 I}, \quad \forall I \in \mathbb{Z} \backslash\{-1\} .
\end{aligned}
$$

It can be seen that

$$
|P(x) M(x)| \leq C
$$

For $k \in \mathbb{Z} \backslash\{-1,0\}, \Psi_{k}^{+}, \Psi_{k}^{-} \in L^{2}(\mathbb{R})$ with

$$
\begin{aligned}
& \left\|\Psi_{k}^{+}\right\|_{L^{2}(\mathbb{R})} \leq C|k|^{4} \\
& \left\|\Psi_{k}^{-}\right\|_{L^{2}(\mathbb{R})} \leq C|k|^{15} e^{-\frac{T}{2}\left(k^{4}-k^{2}\right)}
\end{aligned}
$$

Contd.

Now, we can finally define $\Psi_{k}^{ \pm}$as

$$
\Psi_{k}^{ \pm}(z)=\frac{P(z)}{P^{\prime}\left(i \mu_{k}^{ \pm}\right)\left(z-i \mu_{k}^{ \pm}\right)} \frac{M(z)}{M\left(i \mu_{k}^{ \pm}\right)}, k \in \mathbb{Z} \backslash\{-1,0\}
$$

and

$$
\Psi_{0}(z)=\frac{P(z)}{P^{\prime}(-i)(z+i)} \frac{M(z)}{M(-i)}
$$

Clearly, Ψ_{k} is an entire function of exponential type at most $\pi+a \pi=\frac{T}{2}$ and satisfies

$$
\begin{aligned}
& \Psi_{k}^{ \pm}\left(i \mu_{l}^{ \pm}\right)=\delta_{k l} \delta_{ \pm}, \quad \forall I \in \mathbb{Z} \backslash\{-1\} \text { and } k \in \mathbb{Z} \backslash\{-1,0\}, \\
& \Psi_{0}\left(i \mu_{l}^{ \pm}\right)=\delta_{0 I}, \quad \forall I \in \mathbb{Z} \backslash\{-1\} .
\end{aligned}
$$

It can be seen that

$$
|P(x) M(x)| \leq C
$$

For $k \in \mathbb{Z} \backslash\{-1,0\}, \Psi_{k}^{+}, \Psi_{k}^{-} \in L^{2}(\mathbb{R})$ with

$$
\begin{aligned}
& \left\|\Psi_{k}^{+}\right\|_{L^{2}(\mathbb{R})} \leq C|k|^{4} \\
& \left\|\Psi_{k}^{-}\right\|_{L^{2}(\mathbb{R})} \leq C|k|^{15} e^{-\frac{T}{2}\left(k^{4}-k^{2}\right)}
\end{aligned}
$$

Also,

$$
\left|\Psi_{0}(x)\right| \leq \frac{C}{|x+i|},
$$

and so $\Psi_{0} \in L^{2}(\mathbb{R})$ as well.

Controllability Results

$$
\begin{cases}u_{t}+u_{x x x x}+u_{x x x}+u_{x x}=v_{x}+h_{1}, & (t, x) \in(0, T) \times(0,2 \pi), \tag{17}\\ v_{t}+v_{x}=u_{x}+h_{2}, & (t, x) \in(0, T) \times(0,2 \pi), \\ u(t, 0)=u(t, 2 \pi)+q_{1}(t), & t \in(0, T), \\ u^{(i)}(t, 0)=u^{(i)}(t, 2 \pi), & t \in(0, T), i \in\{1,2,3\}, \\ v(t, 0)=v(t, 2 \pi)+q_{2}(t), & t \in(0, T), \\ u(0, x)=u_{0}(x), v(0, x)=v_{0}(x), & x \in(0,2 \pi),\end{cases}
$$

Controllability Results

$$
\begin{cases}u_{t}+u_{x x x x}+u_{x x x}+u_{x x}=v_{x}+h_{1}, & (t, x) \in(0, T) \times(0,2 \pi), \tag{17}\\ v_{t}+v_{x}=u_{x}+h_{2}, & (t, x) \in(0, T) \times(0,2 \pi), \\ u(t, 0)=u(t, 2 \pi)+q_{1}(t), & t \in(0, T), \\ u^{(i)}(t, 0)=u^{(i)}(t, 2 \pi), & t \in(0, T), i \in\{1,2,3\}, \\ v(t, 0)=v(t, 2 \pi)+q_{2}(t), & t \in(0, T), \\ u(0, x)=u_{0}(x), v(0, x)=v_{0}(x), & x \in(0,2 \pi),\end{cases}
$$

Theorem (Null controllability)

Let $\left(u_{0}, v_{0}\right) \in X$. Then for any time $T>T_{0}=2 \pi$, there exists a control function $F \in Z$ such that the solution of (17) satisfies $(u(T, x), v(T, x))=(0,0)$, where X, F and Z depend on the control system in consideration and are given explicitly in the table below:

S. No.	Space of initial data, X	Control function, F
(a)	$\left\{\left(u_{0}, v_{0}\right) \in \mathcal{H}^{s}(0,2 \pi):\left\langle v_{0}, 1\right\rangle_{1}=0\right\}, s>6.5$	$h_{1}(t, x)=\mathbb{1}_{\omega} f(x) g(t) \in L^{2}\left(0, T ; L^{2}(\omega)\right)$
(b)	$\left\{\left(u_{0}, v_{0}\right) \in \mathcal{H}_{\rho}^{s}(0,2 \pi):\left\langle u_{0}, 1\right\rangle^{2}=0\right\}, s>3.5$	$h_{2}(t, x)=\mathbb{1}_{\omega} f(x) g(t) \in L^{2}\left(0, T ; L^{2}(\omega)\right)$
(c)	$\left\{\left(u_{0}, v_{0}\right) \in \mathcal{H}_{s}^{s}(0,2 \pi):\left\langle u_{0}, 1\right\rangle_{L^{2}}=0\right\}, s>3.5$	
(d)	$\left\{\left(u_{0}, v_{0}\right) \in \mathcal{H}_{p}^{s}(0,2 \pi):\left\langle u_{0}, 1\right\rangle_{L^{2}}=\left\langle v_{0}, 1\right\rangle_{L^{2}}=0\right\}$,	$q_{1} \in L^{2}(0, T)$

where, $\mathcal{H}_{p}^{s}=\left\{(u, \eta) \in H_{p}^{s}(0,2 \pi) \times H_{p}^{s+3}(0,2 \pi):\left\langle u, e^{ \pm i x}\right\rangle_{L^{2}(0,2 \pi)}=\left\langle\eta, e^{ \pm i x}\right\rangle_{L^{2}(0,2 \pi)}=0\right\}$.

References

[1] Subrata Majumdar and Manish Kumar. On the controllability of a system coupling Kuramoto-Sivashinsky-Korteweg-De Vries and transport equations. working paper or preprint, June 2022. URL https://hal.archives-ouvertes.fr/hal-03695906.

Thank You!

