The Atiyah-Jänich Theorem

Satwata Hans, 17MS059

Graduate Students Seminar

Department of Mathematics and Statistics, IISER Kolkata

MATHEMATICS & STATISTICS

April 15, 2022

Overview

- Fredholm Theory
- K-Theory
- Construction of the Index Bundle
- The Atiyah-Jänich Theorem

Goal!

Theorem (Atiyah-Jänich)

Let X be a compact Hausdorff space. Then \exists a semi-group isomorphism

 $[X, \mathcal{F}(\mathcal{H})] \cong \mathsf{K}(X).$

Fredholm Index

Let ${\mathcal H}$ be a separable Hilbert space.

Fredholm Operators

Let $\mathcal{F}(\mathcal{H}) := \{ T \in \mathcal{B}(\mathcal{H}) : \text{dim ker}(T) < \infty \text{ and dim coker}(T) < \infty \}$

Definition (Fredholm Index)

The Fredholm Index is a map ind : $\mathcal{F}(\mathcal{H}) \to \mathbb{Z}$ such that

$$ind(T) = dimker(T) - dimcoker(T).$$

- Let $T_1, T_2 \in \mathcal{F}(\mathcal{H})$, then $\operatorname{ind}(T_1T_2) = \operatorname{ind}(T_1) + \operatorname{ind}(T_2)$.
- $\operatorname{ind}(T^*) = -\operatorname{ind}(T)$.
- ind : $\mathcal{F}(\mathcal{H}) \to \mathbb{Z}$ is surjective and locally constant.

Vector Bundles on Compact Hausdorff Spaces

Definition

A \mathbb{C} -vector bundle is a triple (E, X, p) where $p : E \to X$ is a surjective map with X being a compact Hausdorff space \ni

- The fiber of $x \in X$, $E_x := p^{-1}(x)$ is a \mathbb{C} -vector space,
- $\forall x \in X \exists U \subset X \text{ (open)} \ni x \in U \text{ and } \phi : p^{-1}(U) \xrightarrow{\cong} U \times \mathbb{C}^n \text{ where } \phi|_{E_x} \text{ is a fibre-preserving } \mathbb{C}-\text{linear isomorphism for some } n \in \mathbb{N}.$ (This is called the local triviality condition).

Figure: The Möbius bundle over S¹

Figure: The trivial bundle $\varepsilon^1 \cong \mathbb{S}^1 imes \mathbb{R}$

Definition of K(X)

Definition (Isomorphism of Vector Bundles)

Let $p_1 : E_1 \to X$ and $p_2 : E_1 \to X$ be two vector bundles. They are isomorphic if there exists a map $\phi : E_1 \to E_2$ s.t. this diagram commutes,

and $\phi_x: E_1|_{\rho_1^{-1}(x)} \to E_2|_{\rho_2^{-1}(x)}$ is a linear isomorphism.

Vect(X) := Isomorphism classes of Vector Bundles over X.

Notation: $\varepsilon^k := X \times \mathbb{C}^k$ is called the trivial bundle of rank $k \in \mathbb{N} \cup \{0\}$. $\mathsf{K}(X) := \{[\varepsilon^n]_s - [E]_s : \varepsilon^n \text{ is the trivial bundle of rank } n\}$ where $E_1 \cong_s E_2$ if $E_1 \oplus \varepsilon^k \cong E_2 \oplus \varepsilon^k$ for some $k \in \mathbb{N} \cup \{0\}$.

Satwata Hans, 17MS059 (IISER Kolkata)

Construction of the Index Bundle - 1

Lemma

Let $T \in \mathcal{F}(\mathcal{H})$ and $\mathcal{H}_1 \subset \mathcal{H}$ be a closed subspace of finite codimension such that $\mathcal{H}_1 \cap N(T) = \{0\}$. Then $T(\mathcal{H}_1)$ is closed and $\mathcal{H}/T(\mathcal{H}_1)$ is finite dimensional.

Proof.

$$0 \to \mathcal{T}(\mathcal{H})/\mathcal{T}(\mathcal{H}_1) \to \mathcal{H}/\mathcal{T}(\mathcal{H}_1) \to \mathsf{coker}(\mathcal{T}) \to 0$$

Lemma

There is an open neighbourhood Ω of $T \in \mathcal{F}(\mathcal{H})$ such that for all $S \in \Omega$

- $\mathcal{H}_1 \cap N(S) = \{0\}, S(\mathcal{H}_1) \text{ is closed},$
- $\cup_{S \in \Omega} \mathcal{H}/S(\mathcal{H}_1)$ is a trivial vector bundle.

Construction of the Index Bundle - 2

Theorem

Let X be a compact Hausdorff space and let $\phi : X \to \mathcal{F}$ be a continuous map. Then

• $\exists \mathcal{H}_1 \subset \mathcal{H}$ be a closed subspace of finite codimension such that for all $x \in X$

 $\mathcal{H}_1 \cap \mathsf{N}(\phi_x) = \{0\}.$

• $\cup_{x \in X} \mathcal{H}/\phi_x(\mathcal{H}_1)$ is a vector bundle over X.

Proof.

- For every $x \in X$ choose $\mathcal{H}_{1x} := \mathsf{N}(\phi_x)^{\perp}$ and fix open nbds Ω_x .
- We can cover X by a finite $\{\Omega_{x_1}, ..., \Omega_{x_k}\}$.
- Let $\mathcal{H}_1 := \bigcap_{i=1}^k \mathcal{H}_{1x_i}$. Then $\bigcup_{x \in X} \mathcal{H} / \phi_x(\mathcal{H}_1)$ is a vector bundle.

Definition of the Index Bundle

Definition

The index bundle associated to a map $\phi: X \to \mathcal{F}(\mathcal{H})$ is

$$\mathsf{ind}(\phi) = [\mathcal{H}/\mathcal{H}_1] - [\mathcal{H}/\phi(\mathcal{H}_1)] \in \mathsf{K}(X)$$

where $[\mathcal{H}/\mathcal{H}_1]$ is the trivial bundle $X \times (\mathcal{H}/\mathcal{H}_1)$ and $[\mathcal{H}/\phi(\mathcal{H}_1)]$ is the bundle $\cup_{x \in X} \mathcal{H}/\phi_x(\mathcal{H}_1)$.

- If $\phi_1, \phi_2 : X \to \mathcal{F}(\mathcal{H})$ are homotopic, then $\operatorname{ind}(\phi_1) = \operatorname{ind}(\phi_2)$.
- Hence, ind: $[X, \mathcal{F}(\mathcal{H})] \to \mathsf{K}(X)$.
- ind is a homomorphism of semigroups.

Example

Let $X = \{*\}$ and let $\phi : \{*\} \mapsto T \in \mathcal{F}(\mathcal{H})$. Then we have $ind(\phi) = [X \times ker(T)] - [X \times coker(T)]$.

Satwata Hans, 17MS059 (IISER Kolkata)

The Atiyah-Jänich Theorem

Theorem (Atiyah-Jänich)

Let X be a compact Hausdorff space. Then \exists a semi-group isomorphism

ind :
$$[X, \mathcal{F}(\mathcal{H})] \xrightarrow{\cong} \mathsf{K}(X).$$

Lemma (Kuiper's Theorem)

The group of invertible elements of $\mathcal{B}(\mathcal{H})$ for a separable Hilbert space \mathcal{H} is contractible to the identity map.

Proof.

$$[X, \mathcal{F}(\mathcal{H})^{\times}] \xrightarrow{i} [X, \mathcal{F}(\mathcal{H})] \xrightarrow{\mathsf{ind}} \mathsf{K}(X) \to 0$$

References

- [1] A. Mukherjee, *Atiyah-Singer Index Theorem An Introduction:* An Introduction. Springer, 2013.
- [2] G. J. Murphy, C*-algebras and operator theory. Academic press, 2014.
- [3] A. Hatcher, "Vector bundles and k-theory," In Internet under http://www.math.cornell.edu/hatcher, 2003.